在 MxNet-Gluon 中将 ROIPooling 层与预训练的 ResNet34 模型结合使用
Using ROIPooling layer with a pretrained ResNet34 model in MxNet-Gluon
假设我在 MXNet 中有一个 Resnet34 预保留模型,我想向其中添加 API:
中包含的预制 ROIPooling 层
https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.ROIPooling
如果初始化Resnet的代码如下,如何在分类器之前的Resnet特征的最后一层添加ROIPooling?
实际上,一般如何在我的模型中使用 ROIPooling 函数?
如何在 ROIpooling 层中合并多个不同的 ROI?它们应该如何储存? 应该如何更改数据迭代器才能为我提供 ROIPooling 函数所需的 Batch 索引?
让我们假设我将它与 VOC 2012 数据集一起用于动作识别任务
batch_size = 40
num_classes = 11
init_lr = 0.001
step_epochs = [2]
train_iter, val_iter, num_samples = get_iterators(batch_size,num_classes)
resnet34 = vision.resnet34_v2(pretrained=True, ctx=ctx)
net = vision.resnet34_v2(classes=num_classes)
class ROIPOOLING(gluon.HybridBlock):
def __init__(self):
super(ROIPOOLING, self).__init__()
def hybrid_forward(self, F, x):
#print(x)
a = mx.nd.array([[0, 0, 0, 7, 7]]).tile((40,1))
return F.ROIPooling(x, a, (2,2), 1.0)
net_cl = nn.HybridSequential(prefix='resnetv20')
with net_cl.name_scope():
for l in xrange(4):
net_cl.add(resnet34.classifier._children[l])
net_cl.add(nn.Dense(num_classes, in_units=resnet34.classifier._children[-1]._in_units))
net.classifier = net_cl
net.classifier[-1].collect_params().initialize(mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2), ctx=ctx)
net.features = resnet34.features
net.features._children.append(ROIPOOLING())
net.collect_params().reset_ctx(ctx)
ROIPooling 层通常用于对象检测网络,例如 R-CNN and its variants (Fast R-CNN and Faster R-CNN)。所有这些架构的基本部分是生成区域提案的组件(神经或经典 CV)。这些区域提案基本上是需要输入 ROIPooling 层的 ROI。 ROIPooling 层的输出将是一批张量,其中每个张量代表图像的一个裁剪区域。这些张量中的每一个都被独立处理以进行分类。例如,在 R-CNN 中,这些张量是 RGB 图像的裁剪,然后通过分类网络 运行。在 Fast R-CNN 和 Faster R-CNN 中,张量是来自卷积网络的特征,例如 ResNet34。
在您的示例中,无论是通过经典计算机视觉算法(如 R-CNN 和 Fast R-CNN)还是使用区域提议网络(如 Faster R-CNN),您需要生成一些 候选 的 ROI,以包含感兴趣的对象。一旦你在一个 mini-batch 中获得了每个图像的这些 ROI,你就需要将它们组合成一个 [[batch_index, x1, y1, x2, y2]]
的 NDArray。这个维度意味着你基本上可以拥有任意数量的 ROI,并且对于每个 ROI,你必须指定批处理中要裁剪的图像(因此 batch_index
)以及裁剪的坐标(因此top-left-corner 的 (x1, y1)
和 bottom-right-corner 坐标的 (x2,y2)
)。
因此,基于上述内容,如果您要实现类似于 R-CNN 的功能,您会将图像直接传递到 RoiPooling 层:
class ClassifyObjects(gluon.HybridBlock):
def __init__(self, num_classes, pooled_size):
super(ClassifyObjects, self).__init__()
self.classifier = gluon.model_zoo.vision.resnet34_v2(classes=num_classes)
self.pooled_size = pooled_size
def hybrid_forward(self, F, imgs, rois):
return self.classifier(
F.ROIPooling(
imgs, rois, pooled_size=self.pooled_size, spatial_scale=1.0))
# num_classes are 10 categories plus 1 class for "no-object-in-this-box" category
net = ClassifyObjects(num_classes=11, pooled_size=(64, 64))
# Initialize parameters and overload pre-trained weights
net.collect_params().initialize()
pretrained_net = gluon.model_zoo.vision.resnet34_v2(pretrained=True)
net.classifier.features = pretrained_net.features
现在如果我们通过网络发送虚拟数据,你可以看到如果roi数组包含4个rois,输出将包含4个分类结果:
# Dummy forward pass through the network
imgs = x = nd.random.uniform(shape=(2, 3, 128, 128)) # shape is (batch_size, channels, height, width)
rois = nd.array([[0, 10, 10, 100, 100], [0, 20, 20, 120, 120],
[1, 15, 15, 110, 110], [1, 25, 25, 128, 128]])
out = net(imgs, rois)
print(out.shape)
输出:
(4, 11)
但是,如果您想使用类似于 Fast R-CNN 或 Faster R-CNN 模型的 ROIPooling,您需要在平均池化之前访问网络的特征。这些特征在被传递到分类之前被 ROIPooled。这里有一个例子,其中特征来自 pre-trained 网络,ROIPooling 的 pooled_size
是 4x4,并且一个简单的 GlobalAveragePooling 后跟一个 Dense 层用于 ROIPooling 之后的分类。请注意,由于图像通过 ResNet 网络 max-pooled 乘以 32 倍,因此 spatial_scale
设置为 1.0/32
让 ROIPooling 层自动补偿 rois。
def GetResnetFeatures(resnet):
resnet.features._children.pop() # Pop Flatten layer
resnet.features._children.pop() # Pop GlobalAveragePooling layer
return resnet.features
class ClassifyObjects(gluon.HybridBlock):
def __init__(self, num_classes, pooled_size):
super(ClassifyObjects, self).__init__()
# Add a placeholder for features block
self.features = gluon.nn.HybridSequential()
# Add a classifier block
self.classifier = gluon.nn.HybridSequential()
self.classifier.add(gluon.nn.GlobalAvgPool2D())
self.classifier.add(gluon.nn.Flatten())
self.classifier.add(gluon.nn.Dense(num_classes))
self.pooled_size = pooled_size
def hybrid_forward(self, F, imgs, rois):
features = self.features(imgs)
return self.classifier(
F.ROIPooling(
features, rois, pooled_size=self.pooled_size, spatial_scale=1.0/32))
# num_classes are 10 categories plus 1 class for "no-object-in-this-box" category
net = ClassifyObjects(num_classes=11, pooled_size=(4, 4))
# Initialize parameters and overload pre-trained weights
net.collect_params().initialize()
net.features = GetResnetFeatures(gluon.model_zoo.vision.resnet34_v2(pretrained=True))
现在如果我们通过网络发送虚拟数据,你可以看到如果roi数组包含4个rois,输出将包含4个分类结果:
# Dummy forward pass through the network
# shape of each image is (batch_size, channels, height, width)
imgs = x = nd.random.uniform(shape=(2, 3, 128, 128))
# rois is the output of region proposal module of your architecture
# Each ROI entry contains [batch_index, x1, y1, x2, y2]
rois = nd.array([[0, 10, 10, 100, 100], [0, 20, 20, 120, 120],
[1, 15, 15, 110, 110], [1, 25, 25, 128, 128]])
out = net(imgs, rois)
print(out.shape)
输出:
(4, 11)
假设我在 MXNet 中有一个 Resnet34 预保留模型,我想向其中添加 API:
中包含的预制 ROIPooling 层https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.ROIPooling
如果初始化Resnet的代码如下,如何在分类器之前的Resnet特征的最后一层添加ROIPooling?
实际上,一般如何在我的模型中使用 ROIPooling 函数?
如何在 ROIpooling 层中合并多个不同的 ROI?它们应该如何储存? 应该如何更改数据迭代器才能为我提供 ROIPooling 函数所需的 Batch 索引?
让我们假设我将它与 VOC 2012 数据集一起用于动作识别任务
batch_size = 40
num_classes = 11
init_lr = 0.001
step_epochs = [2]
train_iter, val_iter, num_samples = get_iterators(batch_size,num_classes)
resnet34 = vision.resnet34_v2(pretrained=True, ctx=ctx)
net = vision.resnet34_v2(classes=num_classes)
class ROIPOOLING(gluon.HybridBlock):
def __init__(self):
super(ROIPOOLING, self).__init__()
def hybrid_forward(self, F, x):
#print(x)
a = mx.nd.array([[0, 0, 0, 7, 7]]).tile((40,1))
return F.ROIPooling(x, a, (2,2), 1.0)
net_cl = nn.HybridSequential(prefix='resnetv20')
with net_cl.name_scope():
for l in xrange(4):
net_cl.add(resnet34.classifier._children[l])
net_cl.add(nn.Dense(num_classes, in_units=resnet34.classifier._children[-1]._in_units))
net.classifier = net_cl
net.classifier[-1].collect_params().initialize(mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2), ctx=ctx)
net.features = resnet34.features
net.features._children.append(ROIPOOLING())
net.collect_params().reset_ctx(ctx)
ROIPooling 层通常用于对象检测网络,例如 R-CNN and its variants (Fast R-CNN and Faster R-CNN)。所有这些架构的基本部分是生成区域提案的组件(神经或经典 CV)。这些区域提案基本上是需要输入 ROIPooling 层的 ROI。 ROIPooling 层的输出将是一批张量,其中每个张量代表图像的一个裁剪区域。这些张量中的每一个都被独立处理以进行分类。例如,在 R-CNN 中,这些张量是 RGB 图像的裁剪,然后通过分类网络 运行。在 Fast R-CNN 和 Faster R-CNN 中,张量是来自卷积网络的特征,例如 ResNet34。
在您的示例中,无论是通过经典计算机视觉算法(如 R-CNN 和 Fast R-CNN)还是使用区域提议网络(如 Faster R-CNN),您需要生成一些 候选 的 ROI,以包含感兴趣的对象。一旦你在一个 mini-batch 中获得了每个图像的这些 ROI,你就需要将它们组合成一个 [[batch_index, x1, y1, x2, y2]]
的 NDArray。这个维度意味着你基本上可以拥有任意数量的 ROI,并且对于每个 ROI,你必须指定批处理中要裁剪的图像(因此 batch_index
)以及裁剪的坐标(因此top-left-corner 的 (x1, y1)
和 bottom-right-corner 坐标的 (x2,y2)
)。
因此,基于上述内容,如果您要实现类似于 R-CNN 的功能,您会将图像直接传递到 RoiPooling 层:
class ClassifyObjects(gluon.HybridBlock):
def __init__(self, num_classes, pooled_size):
super(ClassifyObjects, self).__init__()
self.classifier = gluon.model_zoo.vision.resnet34_v2(classes=num_classes)
self.pooled_size = pooled_size
def hybrid_forward(self, F, imgs, rois):
return self.classifier(
F.ROIPooling(
imgs, rois, pooled_size=self.pooled_size, spatial_scale=1.0))
# num_classes are 10 categories plus 1 class for "no-object-in-this-box" category
net = ClassifyObjects(num_classes=11, pooled_size=(64, 64))
# Initialize parameters and overload pre-trained weights
net.collect_params().initialize()
pretrained_net = gluon.model_zoo.vision.resnet34_v2(pretrained=True)
net.classifier.features = pretrained_net.features
现在如果我们通过网络发送虚拟数据,你可以看到如果roi数组包含4个rois,输出将包含4个分类结果:
# Dummy forward pass through the network
imgs = x = nd.random.uniform(shape=(2, 3, 128, 128)) # shape is (batch_size, channels, height, width)
rois = nd.array([[0, 10, 10, 100, 100], [0, 20, 20, 120, 120],
[1, 15, 15, 110, 110], [1, 25, 25, 128, 128]])
out = net(imgs, rois)
print(out.shape)
输出:
(4, 11)
但是,如果您想使用类似于 Fast R-CNN 或 Faster R-CNN 模型的 ROIPooling,您需要在平均池化之前访问网络的特征。这些特征在被传递到分类之前被 ROIPooled。这里有一个例子,其中特征来自 pre-trained 网络,ROIPooling 的 pooled_size
是 4x4,并且一个简单的 GlobalAveragePooling 后跟一个 Dense 层用于 ROIPooling 之后的分类。请注意,由于图像通过 ResNet 网络 max-pooled 乘以 32 倍,因此 spatial_scale
设置为 1.0/32
让 ROIPooling 层自动补偿 rois。
def GetResnetFeatures(resnet):
resnet.features._children.pop() # Pop Flatten layer
resnet.features._children.pop() # Pop GlobalAveragePooling layer
return resnet.features
class ClassifyObjects(gluon.HybridBlock):
def __init__(self, num_classes, pooled_size):
super(ClassifyObjects, self).__init__()
# Add a placeholder for features block
self.features = gluon.nn.HybridSequential()
# Add a classifier block
self.classifier = gluon.nn.HybridSequential()
self.classifier.add(gluon.nn.GlobalAvgPool2D())
self.classifier.add(gluon.nn.Flatten())
self.classifier.add(gluon.nn.Dense(num_classes))
self.pooled_size = pooled_size
def hybrid_forward(self, F, imgs, rois):
features = self.features(imgs)
return self.classifier(
F.ROIPooling(
features, rois, pooled_size=self.pooled_size, spatial_scale=1.0/32))
# num_classes are 10 categories plus 1 class for "no-object-in-this-box" category
net = ClassifyObjects(num_classes=11, pooled_size=(4, 4))
# Initialize parameters and overload pre-trained weights
net.collect_params().initialize()
net.features = GetResnetFeatures(gluon.model_zoo.vision.resnet34_v2(pretrained=True))
现在如果我们通过网络发送虚拟数据,你可以看到如果roi数组包含4个rois,输出将包含4个分类结果:
# Dummy forward pass through the network
# shape of each image is (batch_size, channels, height, width)
imgs = x = nd.random.uniform(shape=(2, 3, 128, 128))
# rois is the output of region proposal module of your architecture
# Each ROI entry contains [batch_index, x1, y1, x2, y2]
rois = nd.array([[0, 10, 10, 100, 100], [0, 20, 20, 120, 120],
[1, 15, 15, 110, 110], [1, 25, 25, 128, 128]])
out = net(imgs, rois)
print(out.shape)
输出:
(4, 11)