获取 Pandas 中多个列的加权平均值和标准差

Getting weighted average and standard deviation on several columns in Pandas

我正在尝试在 pandas 数据框的加权平均值之上进行加权标准偏差。我有一个 pandas 数据框,例如:

import numpy as np
import pandas as pd
df = pd.DataFrame({"Date": pd.date_range(start='2018-01-01', end='2018-01-03 18:00:00', freq='6H'),
               "Weight": np.random.uniform(3, 5, 12),
               "V1": np.random.uniform(10, 15, 12),
               "V2": np.random.uniform(10, 15, 12),
               "V3": np.random.uniform(10, 15, 12)})

目前,为了获得加权平均值,受 this post 启发,我正在执行以下操作:

def weighted_average_std(grp):
    return grp._get_numeric_data().multiply(grp['Weight'], axis=0).sum()/grp['Weight'].sum()
df.index = df["Date"]
df_agg = df.groupby(pd.Grouper(freq='1D')).apply(weighted_average_std).reset_index()
df_agg

我在哪里得到以下信息:

    Date    V1  V2  V3  Weight
0   2018-01-01  11.421749   13.090178   11.639424   3.630196
1   2018-01-02  12.142917   11.605284   12.187473   4.056303
2   2018-01-03  12.034015   13.159132   11.658969   4.318753

我想修改 weighted_average_std,以便除 weighted average 外,每列的标准差 returns。这个想法是以矢量化的方式对每个组使用加权平均值。 Weighted Standard Deviation 的新列名称可以类似于 V1_WSDV2_WSDV3_WSD

PS1:This post通过加权标准差理论。

PS2:df_agg 中的第 Weight 列无意义。

你可以使用 EOL's NumPy-based code 计算加权平均值和标准偏差。要在 Pandas groupby/apply 操作中使用它,请将 weighted_average_std return 设为 DataFrame:

import numpy as np
import pandas as pd


def weighted_average_std(grp):
    """
    Based on  (EOL)
    """
    tmp = grp.select_dtypes(include=[np.number])
    weights = tmp['Weight']
    values = tmp.drop('Weight', axis=1)
    average = np.ma.average(values, weights=weights, axis=0)
    variance = np.dot(weights, (values - average) ** 2) / weights.sum()
    std = np.sqrt(variance)
    return pd.DataFrame({'mean':average, 'std':std}, index=values.columns)

np.random.seed(0)
df = pd.DataFrame({
    "Date": pd.date_range(start='2018-01-01', end='2018-01-03 18:00:00', freq='6H'),
    "Weight": np.random.uniform(3, 5, 12),
    "V1": np.random.uniform(10, 15, 12),
    "V2": np.random.uniform(10, 15, 12),
    "V3": np.random.uniform(10, 15, 12)})

df.index = df["Date"]
df_agg = df.groupby(pd.Grouper(freq='1D')).apply(weighted_average_std).unstack(-1)
print(df_agg)

产量

                 mean                             std                    
                   V1         V2         V3        V1        V2        V3
Date                                                                     
2018-01-01  12.105253  12.314079  13.566136  1.803014  1.725761  0.679279
2018-01-02  13.223172  12.534893  11.860456  1.709583  0.950338  1.153895
2018-01-03  13.782625  12.013557  12.105231  0.969099  1.189149  1.249064