tf.data.Dataset 是否支持生成字典结构?
Does the tf.data.Dataset support to generate dictionary structure?
以下是来自[https://www.tensorflow.org/programmers_guide/datasets]的一段代码。在此示例中,map
函数是一个用户定义函数,用于读取数据。而在map
函数中,我们需要设置输出类型为[tf.uint8, label.dtype]
。
import cv2
# Use a custom OpenCV function to read the image, instead of the standard
# TensorFlow `tf.read_file()` operation.
def _read_py_function(filename, label):
image_decoded = cv2.imread(image_string, cv2.IMREAD_GRAYSCALE)
return image_decoded, label
# Use standard TensorFlow operations to resize the image to a fixed shape.
def _resize_function(image_decoded, label):
image_decoded.set_shape([None, None, None])
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized, label
filenames = ["/var/data/image1.jpg", "/var/data/image2.jpg", ...]
labels = [0, 37, 29, 1, ...]
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(
lambda filename, label: tuple(tf.py_func(
_read_py_function, [filename, label], [tf.uint8, label.dtype])))
dataset = dataset.map(_resize_function)
我的问题是,如果我们想_read_py_function()
输出一个Python字典,那么我们如何设置输出类型呢?是否有继承数据类型,如tf.dict
?例如:
def _read_py_function(filename):
image_filename = filename[0]
label_filename = filename[1]
image_id = filename[2]
image_age = filename[3]
image_decoded = cv2.imread(image_filename, cv2.IMREAD_GRAYSCALE)
image_decoded = cv2.imread(label_fielname, cv2.IMREAD_GRAYSCALE)
return {'image':image_decoded, 'label':label_decoded, 'id':image_id, 'age':image_age}
那么,我们如何设计dataset.map()
功能呢?
在 tf.data.Dataset.map
调用的函数内返回字典应该按预期工作。
这是一个例子:
dataset = tf.data.Dataset.range(10)
dataset = dataset.map(lambda x: {'a': x, 'b': 2 * x})
dataset = dataset.map(lambda y: y['a'] + y['b'])
res = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for i in range(10):
assert sess.run(res) == 3 * i
要添加到上述答案中,这也有效:
dataset = tf.data.Dataset.range(10)
dataset = dataset.map(lambda x: {'a': x, 'b': 2 * x})
res = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for i in range(10):
curr_res = sess.run(res)
assert curr_res['a'] == i
assert curr_res['b'] == 2 * i
以下是来自[https://www.tensorflow.org/programmers_guide/datasets]的一段代码。在此示例中,map
函数是一个用户定义函数,用于读取数据。而在map
函数中,我们需要设置输出类型为[tf.uint8, label.dtype]
。
import cv2
# Use a custom OpenCV function to read the image, instead of the standard
# TensorFlow `tf.read_file()` operation.
def _read_py_function(filename, label):
image_decoded = cv2.imread(image_string, cv2.IMREAD_GRAYSCALE)
return image_decoded, label
# Use standard TensorFlow operations to resize the image to a fixed shape.
def _resize_function(image_decoded, label):
image_decoded.set_shape([None, None, None])
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized, label
filenames = ["/var/data/image1.jpg", "/var/data/image2.jpg", ...]
labels = [0, 37, 29, 1, ...]
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(
lambda filename, label: tuple(tf.py_func(
_read_py_function, [filename, label], [tf.uint8, label.dtype])))
dataset = dataset.map(_resize_function)
我的问题是,如果我们想_read_py_function()
输出一个Python字典,那么我们如何设置输出类型呢?是否有继承数据类型,如tf.dict
?例如:
def _read_py_function(filename):
image_filename = filename[0]
label_filename = filename[1]
image_id = filename[2]
image_age = filename[3]
image_decoded = cv2.imread(image_filename, cv2.IMREAD_GRAYSCALE)
image_decoded = cv2.imread(label_fielname, cv2.IMREAD_GRAYSCALE)
return {'image':image_decoded, 'label':label_decoded, 'id':image_id, 'age':image_age}
那么,我们如何设计dataset.map()
功能呢?
在 tf.data.Dataset.map
调用的函数内返回字典应该按预期工作。
这是一个例子:
dataset = tf.data.Dataset.range(10)
dataset = dataset.map(lambda x: {'a': x, 'b': 2 * x})
dataset = dataset.map(lambda y: y['a'] + y['b'])
res = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for i in range(10):
assert sess.run(res) == 3 * i
要添加到上述答案中,这也有效:
dataset = tf.data.Dataset.range(10)
dataset = dataset.map(lambda x: {'a': x, 'b': 2 * x})
res = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for i in range(10):
curr_res = sess.run(res)
assert curr_res['a'] == i
assert curr_res['b'] == 2 * i