MATLAB 中的直方图交集核优化

Histogram intersection kernel optimization in MATLAB

我想尝试使用直方图交集内核的 svm 分类器,用于包含 153 张图像的数据集,但需要很长时间。这是我的代码:

a = load('...'); %vectors
b = load('...'); %labels
g = dataset(a,b);

error = crossval(g,libsvc([],proxm([],'ih'),100),10,10);
error1 = crossval(g,libsvc([],proxm([],'ih'),10),10,10);
error2 = crossval(g,libsvc([],proxm([],'ih'),1),10,10);

我在 proxm 函数中的内核实现是:

...
case {'dist_histint','ih'}
    [m,d]=size(A);
    [n,d1]=size(B);
    if (d ~= d1)
        error('column length of A (%d) != column length of B (%d)\n',d,d1);
    end

    % With the MATLAB JIT compiler the trivial implementation turns out
    % to be the fastest, especially for large matrices.
    D = zeros(m,n);
    for i=1:m % m is number of samples of A 
        if (0==mod(i,1000)) fprintf('.'); end
        for j=1:n % n is number of samples of B
            D(i,j) = sum(min([A(i,:);B(j,:)]));%./max(A(:,i),B(:,j)));
        end            
    end

我需要对此代码进行一些 matlab 优化!

您可以使用这种 bsxfun based vectorized 方法摆脱内核循环来计算 D -

D = squeeze(sum(bsxfun(@min,A,permute(B,[3 2 1])),2))

或通过此修改避免 squeeze -

D = sum(bsxfun(@min,permute(A,[1 3 2]),permute(B,[3 1 2])),3)

如果D的计算涉及max而不是min,只需将@min替换为@max即可。


解释: bsxfun 的工作方式是对单维度进行 扩展 并执行所列的操作@ 在它的调用中。现在,这种扩展基本上就是实现替代 for 循环的矢量化解决方案的方式。数组中的 singleton dimensions 是指数组中 1 的维度。

在许多情况下,单维度还不存在,为了使用 bsxfun 进行矢量化,我们需要创建 singleton dimensions。这样做的工具之一是 permute。这基本上就是前面所述的矢量化方法的工作方式。

因此,您的内核代码 -

...
case {'dist_histint','ih'}
    [m,d]=size(A);
    [n,d1]=size(B);
    if (d ~= d1)
        error('column length of A (%d) != column length of B (%d)\n',d,d1);
    end

    % With the MATLAB JIT compiler the trivial implementation turns out
    % to be the fastest, especially for large matrices.
    D = zeros(m,n);
    for i=1:m % m is number of samples of A 
        if (0==mod(i,1000)) fprintf('.'); end
        for j=1:n % n is number of samples of B
            D(i,j) = sum(min([A(i,:);B(j,:)]));%./max(A(:,i),B(:,j)));
        end            
    end

减少到 -

...
case {'dist_histint','ih'}
    [m,d]=size(A);
    [n,d1]=size(B);
    if (d ~= d1)
        error('column length of A (%d) != column length of B (%d)\n',d,d1);
    end
    D = squeeze(sum(bsxfun(@min,A,permute(B,[3 2 1])),2))
    %// OR D = sum(bsxfun(@min,permute(A,[1 3 2]),permute(B,[3 1 2])),3)

我假设行:if (0==mod(i,1000)) fprintf('.'); end 对计算并不重要,因为它会打印某些消息。