如何编写 Ltac 以将等式两边乘以 Coq 中的组元素
How to write an Ltac to multiply both sides of a equation by a group element in Coq
使用这个组定义:
Structure group :=
{
G :> Set;
id : G;
op : G -> G -> G;
inv : G -> G;
op_assoc_def : forall (x y z : G), op x (op y z) = op (op x y) z;
op_inv_l : forall (x : G), id = op (inv x) x;
op_id_l : forall (x : G), x = op id x
}.
(** Set implicit arguments *)
Arguments id {g}.
Arguments op {g} _ _.
Arguments inv {g} _.
Notation "x # y" := (op x y) (at level 50, left associativity).
并证明了这个定理:
Theorem mult_both_sides (G : group) : forall (a b c : G),
a = b <-> c # a = c # b.
我如何编写一个 Ltac 来自动执行给定项左乘给定等式(目标本身或假设)的过程?
理想情况下,在证明中使用此 Ltac 应如下所示:
left_mult (arbitrary expression).
left_mult (arbitrary expression) in (hypothesis).
你真的需要一个特定的策略吗?如果你只是用 apply
到这个
Goal forall (G:group) (a b c: G), a = b.
intros.
apply (mult_both_sides _ _ _ c).
现在你的目标是
G0 : group
a, b, c : G0
============================
c # a = c # b
如果你想修改一个假设H
,那么只需要apply ... in H
。
在 的基础上,您可以使用 Tactic Notation
编写
Tactic Notation "left_mult" uconstr(arbitrary_expression) :=
apply (mult_both_sides _ _ _ arbitrary_expression).
Tactic Notation "left_mult" uconstr(arbitrary_expression) "in" hyp(hypothesis) :=
apply (mult_both_sides _ _ _ arbitrary_expression) in hypothesis.
使用 uconstr
表示 "delay typechecking of this term until we plug it into apply
"。 (其他选项包括 constr
("typecheck this at the call site") 和 open_constr
("typecheck this at the call site and fill in holes with evars")。)
使用这个组定义:
Structure group :=
{
G :> Set;
id : G;
op : G -> G -> G;
inv : G -> G;
op_assoc_def : forall (x y z : G), op x (op y z) = op (op x y) z;
op_inv_l : forall (x : G), id = op (inv x) x;
op_id_l : forall (x : G), x = op id x
}.
(** Set implicit arguments *)
Arguments id {g}.
Arguments op {g} _ _.
Arguments inv {g} _.
Notation "x # y" := (op x y) (at level 50, left associativity).
并证明了这个定理:
Theorem mult_both_sides (G : group) : forall (a b c : G),
a = b <-> c # a = c # b.
我如何编写一个 Ltac 来自动执行给定项左乘给定等式(目标本身或假设)的过程?
理想情况下,在证明中使用此 Ltac 应如下所示:
left_mult (arbitrary expression).
left_mult (arbitrary expression) in (hypothesis).
你真的需要一个特定的策略吗?如果你只是用 apply
到这个
Goal forall (G:group) (a b c: G), a = b.
intros.
apply (mult_both_sides _ _ _ c).
现在你的目标是
G0 : group
a, b, c : G0
============================
c # a = c # b
如果你想修改一个假设H
,那么只需要apply ... in H
。
在 Tactic Notation
编写
Tactic Notation "left_mult" uconstr(arbitrary_expression) :=
apply (mult_both_sides _ _ _ arbitrary_expression).
Tactic Notation "left_mult" uconstr(arbitrary_expression) "in" hyp(hypothesis) :=
apply (mult_both_sides _ _ _ arbitrary_expression) in hypothesis.
使用 uconstr
表示 "delay typechecking of this term until we plug it into apply
"。 (其他选项包括 constr
("typecheck this at the call site") 和 open_constr
("typecheck this at the call site and fill in holes with evars")。)