多处理显示多个进度条
Multiprocessing show multiple progress bars
对于我的程序,我有一个将随机整数写入 .CSV 文件的文件。
from __future__ import absolute_import, division, print_function
from numpy.random import randint as randrange
import os, argparse, time
from tqdm import tqdm
def write_to_csv(filename, *args, newline = True):
write_string = ''
for arg in args:
if type(arg) == list:
for i in arg:
write_string += str(i) + ','
else:
write_string += str(arg) + ','
if newline:
write_string = write_string.rstrip(',') + '\n'
else:
write_string = write_string.rstrip(',')
with open(filename+'.csv', 'a') as file:
file.write(write_string)
def move_dir(dirname, parent = False):
if not parent:
dirname = str(dirname)
exists = os.path.isfile(dirname)
try:
os.mkdir(dirname)
os.chdir(dirname)
except FileExistsError:
os.chdir(dirname)
else:
os.chdir("..")
def calculate_probability(odds, exitmode = False, low_cpu = 0):
try:
file_count = 0
move_dir('Probability')
move_dir(str(odds))
d = {}
writelist = []
percentlist = []
for i in tqdm(range(odds)):
d[str(i)] = 0
writelist.append(f'Times {i}')
percentlist.append(f'Percent {i}')
while True:
if os.path.isfile(str(file_count)+'.csv'):
file_count += 1
else:
break
filename = str(file_count)
write_to_csv(filename, 'Number', 'Value')
rep = 500 * odds
if rep > 10000:
rep = 10000
for i in tqdm(range(rep)):
ran = randrange(odds)
ran = int(ran)
d[str(ran)] += 1
if i == 999:
write_to_csv(filename, i, ran+1, newline = False)
else:
write_to_csv(filename, i, ran+1)
if low_cpu:
time.sleep(0.01*float(low_cpu))
writelist2 = []
percentlist2 = []
for i in tqdm(range(odds)):
val = d[str(i)]
writelist2.append(val)
percentlist2.append(round(((val/rep)*100), 2))
if os.path.isfile('runs.csv'):
write_to_csv('runs', file_count, writelist2, percentlist2)
else:
write_to_csv('runs', 'Run #', writelist, percentlist)
write_to_csv('runs', file_count, writelist2, percentlist2)
if exitmode:
exit()
except(KeyboardInterrupt, SystemExit):
if exitmode:
os.remove(str(file_count)+'.csv')
exit()
else:
try:
os.system('cls')
print('User/program interrupted, lauching shutdown mode...')
os.remove(str(file_count)+'.csv')
print('Finilizaing current trial...')
os.chdir("..")
os.chdir("..")
except FileNotFoundError:
exit()
calculate_probability(odds, exitmode = True)
我还有一个重复系统可以多次执行此操作。
def run_tests(times, odds, low_cpu = 0, shutdown = False):
for i in tqdm(range(times)):
calculate_probability(odds, low_cpu = low_cpu)
os.chdir("..")
os.chdir("..")
if shutdown:
os.system('shutdown /S /F /T 0 /hybrid')
但是,如果我要 运行 走 30 条路,那将需要很长时间。所以我决定使用 multiprocessing 模块来加速这个过程。因为每个 运行 最后都需要写入同一个文件,所以我不得不收集数据并在进程结束后写入它们。
def calculate_probability(odds, low_cpu = 0):
try:
file_count = 0
move_dir('Probability')
move_dir(str(odds))
d = {}
writelist = []
percentlist = []
for i in tqdm(range(odds)):
d[str(i)] = 0
writelist.append(f'Times {i}')
percentlist.append(f'Percent {i}')
while True:
if os.path.isfile(str(file_count)+'.csv'):
file_count += 1
else:
break
filename = str(file_count)
write_to_csv(filename, 'Number', 'Value')
rep = 500 * odds
if rep > 10000:
rep = 10000
for i in range(rep):
ran = randrange(odds)
ran = int(ran)
d[str(ran)] += 1
if i == 999:
write_to_csv(filename, i, ran+1, newline = False)
else:
write_to_csv(filename, i, ran+1)
if low_cpu:
time.sleep(0.01*float(low_cpu))
writelist2 = []
percentlist2 = []
for i in range(odds):
val = d[str(i)]
writelist2.append(val)
percentlist2.append(round(((val/rep)*100), 2))
return (writelist, percentlist, writelist2, percentlist2)
except(KeyboardInterrupt, SystemExit):
try:
os.remove(str(file_count)+'.csv')
finally:
exit()
def worker(odds, returndict, num, low_cpu = 0):
returndict[f'write{num}'] = calculate_probability(odds, low_cpu = low_cpu)
os.chdir("..")
os.chdir("..")
os.system('cls')
def run_tests(times, odds, low_cpu = 0, shutdown = False):
print('Starting...')
manager = Manager()
return_dict = manager.dict()
job_list = []
for i in range(times):
p = Process(target=worker, args=(odds,return_dict,i), kwargs = {'low_cpu' : low_cpu})
job_list.append(p)
p.start()
try:
for proc in job_list:
proc.join()
except KeyboardInterrupt:
print('User quit program...')
time.sleep(5)
for proc in job_list:
proc.join()
exit()
else:
move_dir('Probability')
move_dir(str(odds))
if not os.path.isfile('runs.csv'):
write_to_csv('runs', return_dict.values()[0][0], return_dict.values()[0][1])
for value in return_dict.values():
write_to_csv('runs', value[2], value[3])
print('Done!')
finally:
if shutdown:
os.system('shutdown /S /F /T 0 /hybrid')
但是,当我运行这个新代码时,有一个进度条,每个进程都会覆盖进度条,所以进度条会随机闪烁,使进度条很有用。我想要一堆条,每个进程一个,每个更新都不会中断其他条。这些酒吧不需要订购;我只需要了解每个进程执行任务的速度。
STDOUT 只是一个流,您的所有进程都附加到同一个流,因此没有直接的方法告诉它在不同的行上打印来自不同进程的输出。
实现这一点的最简单方法可能是拥有一个单独的进程,负责汇总所有其他进程的状态并报告结果。您可以使用 multiprocessing.Queue 将数据从工作线程传递到状态线程,然后状态线程可以将状态打印到标准输出。如果你想要一堆进度条,你必须在格式上有点创意(本质上是同时更新所有进度条并以相同的顺序打印它们,以便它们看起来堆叠起来)。
对于我的程序,我有一个将随机整数写入 .CSV 文件的文件。
from __future__ import absolute_import, division, print_function
from numpy.random import randint as randrange
import os, argparse, time
from tqdm import tqdm
def write_to_csv(filename, *args, newline = True):
write_string = ''
for arg in args:
if type(arg) == list:
for i in arg:
write_string += str(i) + ','
else:
write_string += str(arg) + ','
if newline:
write_string = write_string.rstrip(',') + '\n'
else:
write_string = write_string.rstrip(',')
with open(filename+'.csv', 'a') as file:
file.write(write_string)
def move_dir(dirname, parent = False):
if not parent:
dirname = str(dirname)
exists = os.path.isfile(dirname)
try:
os.mkdir(dirname)
os.chdir(dirname)
except FileExistsError:
os.chdir(dirname)
else:
os.chdir("..")
def calculate_probability(odds, exitmode = False, low_cpu = 0):
try:
file_count = 0
move_dir('Probability')
move_dir(str(odds))
d = {}
writelist = []
percentlist = []
for i in tqdm(range(odds)):
d[str(i)] = 0
writelist.append(f'Times {i}')
percentlist.append(f'Percent {i}')
while True:
if os.path.isfile(str(file_count)+'.csv'):
file_count += 1
else:
break
filename = str(file_count)
write_to_csv(filename, 'Number', 'Value')
rep = 500 * odds
if rep > 10000:
rep = 10000
for i in tqdm(range(rep)):
ran = randrange(odds)
ran = int(ran)
d[str(ran)] += 1
if i == 999:
write_to_csv(filename, i, ran+1, newline = False)
else:
write_to_csv(filename, i, ran+1)
if low_cpu:
time.sleep(0.01*float(low_cpu))
writelist2 = []
percentlist2 = []
for i in tqdm(range(odds)):
val = d[str(i)]
writelist2.append(val)
percentlist2.append(round(((val/rep)*100), 2))
if os.path.isfile('runs.csv'):
write_to_csv('runs', file_count, writelist2, percentlist2)
else:
write_to_csv('runs', 'Run #', writelist, percentlist)
write_to_csv('runs', file_count, writelist2, percentlist2)
if exitmode:
exit()
except(KeyboardInterrupt, SystemExit):
if exitmode:
os.remove(str(file_count)+'.csv')
exit()
else:
try:
os.system('cls')
print('User/program interrupted, lauching shutdown mode...')
os.remove(str(file_count)+'.csv')
print('Finilizaing current trial...')
os.chdir("..")
os.chdir("..")
except FileNotFoundError:
exit()
calculate_probability(odds, exitmode = True)
我还有一个重复系统可以多次执行此操作。
def run_tests(times, odds, low_cpu = 0, shutdown = False):
for i in tqdm(range(times)):
calculate_probability(odds, low_cpu = low_cpu)
os.chdir("..")
os.chdir("..")
if shutdown:
os.system('shutdown /S /F /T 0 /hybrid')
但是,如果我要 运行 走 30 条路,那将需要很长时间。所以我决定使用 multiprocessing 模块来加速这个过程。因为每个 运行 最后都需要写入同一个文件,所以我不得不收集数据并在进程结束后写入它们。
def calculate_probability(odds, low_cpu = 0):
try:
file_count = 0
move_dir('Probability')
move_dir(str(odds))
d = {}
writelist = []
percentlist = []
for i in tqdm(range(odds)):
d[str(i)] = 0
writelist.append(f'Times {i}')
percentlist.append(f'Percent {i}')
while True:
if os.path.isfile(str(file_count)+'.csv'):
file_count += 1
else:
break
filename = str(file_count)
write_to_csv(filename, 'Number', 'Value')
rep = 500 * odds
if rep > 10000:
rep = 10000
for i in range(rep):
ran = randrange(odds)
ran = int(ran)
d[str(ran)] += 1
if i == 999:
write_to_csv(filename, i, ran+1, newline = False)
else:
write_to_csv(filename, i, ran+1)
if low_cpu:
time.sleep(0.01*float(low_cpu))
writelist2 = []
percentlist2 = []
for i in range(odds):
val = d[str(i)]
writelist2.append(val)
percentlist2.append(round(((val/rep)*100), 2))
return (writelist, percentlist, writelist2, percentlist2)
except(KeyboardInterrupt, SystemExit):
try:
os.remove(str(file_count)+'.csv')
finally:
exit()
def worker(odds, returndict, num, low_cpu = 0):
returndict[f'write{num}'] = calculate_probability(odds, low_cpu = low_cpu)
os.chdir("..")
os.chdir("..")
os.system('cls')
def run_tests(times, odds, low_cpu = 0, shutdown = False):
print('Starting...')
manager = Manager()
return_dict = manager.dict()
job_list = []
for i in range(times):
p = Process(target=worker, args=(odds,return_dict,i), kwargs = {'low_cpu' : low_cpu})
job_list.append(p)
p.start()
try:
for proc in job_list:
proc.join()
except KeyboardInterrupt:
print('User quit program...')
time.sleep(5)
for proc in job_list:
proc.join()
exit()
else:
move_dir('Probability')
move_dir(str(odds))
if not os.path.isfile('runs.csv'):
write_to_csv('runs', return_dict.values()[0][0], return_dict.values()[0][1])
for value in return_dict.values():
write_to_csv('runs', value[2], value[3])
print('Done!')
finally:
if shutdown:
os.system('shutdown /S /F /T 0 /hybrid')
但是,当我运行这个新代码时,有一个进度条,每个进程都会覆盖进度条,所以进度条会随机闪烁,使进度条很有用。我想要一堆条,每个进程一个,每个更新都不会中断其他条。这些酒吧不需要订购;我只需要了解每个进程执行任务的速度。
STDOUT 只是一个流,您的所有进程都附加到同一个流,因此没有直接的方法告诉它在不同的行上打印来自不同进程的输出。
实现这一点的最简单方法可能是拥有一个单独的进程,负责汇总所有其他进程的状态并报告结果。您可以使用 multiprocessing.Queue 将数据从工作线程传递到状态线程,然后状态线程可以将状态打印到标准输出。如果你想要一堆进度条,你必须在格式上有点创意(本质上是同时更新所有进度条并以相同的顺序打印它们,以便它们看起来堆叠起来)。