计算非实数数据的增量熵
Calculating Incremental Entropy for Data that is not real numbers
我有一组数据,其中包含 ID、时间戳和标识符。我必须通过它,计算熵并为数据保存一些其他链接。在每个步骤中,更多的标识符被添加到标识符字典中,我必须重新计算熵并将其附加。我有大量的数据,由于标识符数量的增加和每一步之后的熵计算,程序卡住了。我阅读了以下解决方案,但它是关于由数字组成的数据。
Incremental entropy computation
我从这个页面复制了两个函数,熵的增量计算在每一步给出的值都与经典的全熵计算不同。
这是我的代码:
from math import log
# ---------------------------------------------------------------------#
# Functions copied from
# maps x to -x*log2(x) for x>0, and to 0 otherwise
h = lambda p: -p*log(p, 2) if p > 0 else 0
# entropy of union of two samples with entropies H1 and H2
def update(H1, S1, H2, S2):
S = S1+S2
return 1.0*H1*S1/S+h(1.0*S1/S)+1.0*H2*S2/S+h(1.0*S2/S)
# compute entropy using the classic equation
def entropy(L):
n = 1.0*sum(L)
return sum([h(x/n) for x in L])
# ---------------------------------------------------------------------#
# Below is the input data (Actually I read it from a csv file)
input_data = [["1","2008-01-06T02:13:38Z","foo,bar"], ["2","2008-01-06T02:12:13Z","bar,blup"], ["3","2008-01-06T02:13:55Z","foo,bar"],
["4","2008-01-06T02:12:28Z","foo,xy"], ["5","2008-01-06T02:12:44Z","foo,bar"], ["6","2008-01-06T02:13:00Z","foo,bar"],
["7","2008-01-06T02:13:00Z","x,y"]]
total_identifiers = {} # To store the occurrences of identifiers. Values shows the number of occurrences
all_entropies = [] # Classical way of calculating entropy at every step
updated_entropies = [] # Incremental way of calculating entropy at every step
for item in input_data:
temp = item[2].split(",")
identifiers_sum = sum(total_identifiers.values()) # Sum of all identifiers
old_entropy = 0 if all_entropies[-1:] == [] else all_entropies[-1] # Get previous entropy calculation
for identifier in temp:
S_new = len(temp) # sum of new samples
temp_dictionaty = {a:1 for a in temp} # Store current identifiers and their occurrence
if identifier not in total_identifiers:
total_identifiers[identifier] = 1
else:
total_identifiers[identifier] += 1
current_entropy = entropy(total_identifiers.values()) # Entropy for current set of identifiers
updated_entropy = update(old_entropy, identifiers_sum, current_entropy, S_new)
updated_entropies.append(updated_entropy)
entropy_value = entropy(total_identifiers.values()) # Classical entropy calculation for comparison. This step becomes too expensive with big data
all_entropies.append(entropy_value)
print(total_identifiers)
print('Sum of Total Identifiers: ', identifiers_sum) # Gives 12 while the sum is 14 ???
print("All Classical Entropies: ", all_entropies) # print for comparison
print("All Updated Entropies: ", updated_entropies)
另一个问题是,当我打印 "Sum of total_identifiers" 时,它给出 12 而不是 14! (由于数据量很大,我是逐行读取实际文件,结果直接写入磁盘,除了标识符字典外,没有存入内存)。
上面的代码使用了定理4;在我看来,您想改用定理 5(来自下一段的论文)。
但是请注意,如果标识符的数量确实是问题所在,那么下面的增量方法也不会起作用——在某些时候字典会变得太大。
您可以在下方找到遵循 Updating Formulas and Algorithms for Computing Entropy and Gini Index from Time-Changing Data Streams 描述的概念验证 Python 实现。
import collections
import math
import random
def log2(p):
return math.log(p, 2) if p > 0 else 0
CountChange = collections.namedtuple('CountChange', ('label', 'change'))
class EntropyHolder:
def __init__(self):
self.counts_ = collections.defaultdict(int)
self.entropy_ = 0
self.sum_ = 0
def update(self, count_changes):
r = sum([change for _, change in count_changes])
residual = self._compute_residual(count_changes)
self.entropy_ = self.sum_ * (self.entropy_ - log2(self.sum_ / (self.sum_ + r))) / (self.sum_ + r) - residual
self._update_counts(count_changes)
return self.entropy_
def _compute_residual(self, count_changes):
r = sum([change for _, change in count_changes])
residual = 0
for label, change in count_changes:
p_new = (self.counts_[label] + change) / (self.sum_ + r)
p_old = self.counts_[label] / (self.sum_ + r)
residual += p_new * log2(p_new) - p_old * log2(p_old)
return residual
def _update_counts(self, count_changes):
for label, change in count_changes:
self.sum_ += change
self.counts_[label] += change
def entropy(self):
return self.entropy_
def naive_entropy(counts):
s = sum(counts)
return sum([-(r/s) * log2(r/s) for r in counts])
if __name__ == '__main__':
print(naive_entropy([1, 1]))
print(naive_entropy([1, 1, 1, 1]))
entropy = EntropyHolder()
freq = collections.defaultdict(int)
for _ in range(100):
index = random.randint(0, 5)
entropy.update([CountChange(index, 1)])
freq[index] += 1
print(naive_entropy(freq.values()))
print(entropy.entropy())
感谢@blazs 提供 entropy_holder class。这解决了问题。所以想法是从 (https://gist.github.com/blazs/4fc78807a96976cc455f49fc0fb28738) 导入 entropy_holder.py 并用它来存储以前的熵,并在新标识符出现时在每一步更新。
所以最小的工作代码应该是这样的:
import entropy_holder
input_data = [["1","2008-01-06T02:13:38Z","foo,bar"], ["2","2008-01-06T02:12:13Z","bar,blup"], ["3","2008-01-06T02:13:55Z","foo,bar"],
["4","2008-01-06T02:12:28Z","foo,xy"], ["5","2008-01-06T02:12:44Z","foo,bar"], ["6","2008-01-06T02:13:00Z","foo,bar"],
["7","2008-01-06T02:13:00Z","x,y"]]
entropy = entropy_holder.EntropyHolder() # This class will hold the current entropy and counts of identifiers
for item in input_data:
for identifier in item[2].split(","):
entropy.update([entropy_holder.CountChange(identifier, 1)])
print(entropy.entropy())
使用 Blaz 的增量公式得到的熵非常接近class逻辑方法计算出的熵,并且避免了一次又一次地迭代所有数据。
我有一组数据,其中包含 ID、时间戳和标识符。我必须通过它,计算熵并为数据保存一些其他链接。在每个步骤中,更多的标识符被添加到标识符字典中,我必须重新计算熵并将其附加。我有大量的数据,由于标识符数量的增加和每一步之后的熵计算,程序卡住了。我阅读了以下解决方案,但它是关于由数字组成的数据。 Incremental entropy computation
我从这个页面复制了两个函数,熵的增量计算在每一步给出的值都与经典的全熵计算不同。 这是我的代码:
from math import log
# ---------------------------------------------------------------------#
# Functions copied from
# maps x to -x*log2(x) for x>0, and to 0 otherwise
h = lambda p: -p*log(p, 2) if p > 0 else 0
# entropy of union of two samples with entropies H1 and H2
def update(H1, S1, H2, S2):
S = S1+S2
return 1.0*H1*S1/S+h(1.0*S1/S)+1.0*H2*S2/S+h(1.0*S2/S)
# compute entropy using the classic equation
def entropy(L):
n = 1.0*sum(L)
return sum([h(x/n) for x in L])
# ---------------------------------------------------------------------#
# Below is the input data (Actually I read it from a csv file)
input_data = [["1","2008-01-06T02:13:38Z","foo,bar"], ["2","2008-01-06T02:12:13Z","bar,blup"], ["3","2008-01-06T02:13:55Z","foo,bar"],
["4","2008-01-06T02:12:28Z","foo,xy"], ["5","2008-01-06T02:12:44Z","foo,bar"], ["6","2008-01-06T02:13:00Z","foo,bar"],
["7","2008-01-06T02:13:00Z","x,y"]]
total_identifiers = {} # To store the occurrences of identifiers. Values shows the number of occurrences
all_entropies = [] # Classical way of calculating entropy at every step
updated_entropies = [] # Incremental way of calculating entropy at every step
for item in input_data:
temp = item[2].split(",")
identifiers_sum = sum(total_identifiers.values()) # Sum of all identifiers
old_entropy = 0 if all_entropies[-1:] == [] else all_entropies[-1] # Get previous entropy calculation
for identifier in temp:
S_new = len(temp) # sum of new samples
temp_dictionaty = {a:1 for a in temp} # Store current identifiers and their occurrence
if identifier not in total_identifiers:
total_identifiers[identifier] = 1
else:
total_identifiers[identifier] += 1
current_entropy = entropy(total_identifiers.values()) # Entropy for current set of identifiers
updated_entropy = update(old_entropy, identifiers_sum, current_entropy, S_new)
updated_entropies.append(updated_entropy)
entropy_value = entropy(total_identifiers.values()) # Classical entropy calculation for comparison. This step becomes too expensive with big data
all_entropies.append(entropy_value)
print(total_identifiers)
print('Sum of Total Identifiers: ', identifiers_sum) # Gives 12 while the sum is 14 ???
print("All Classical Entropies: ", all_entropies) # print for comparison
print("All Updated Entropies: ", updated_entropies)
另一个问题是,当我打印 "Sum of total_identifiers" 时,它给出 12 而不是 14! (由于数据量很大,我是逐行读取实际文件,结果直接写入磁盘,除了标识符字典外,没有存入内存)。
上面的代码使用了定理4;在我看来,您想改用定理 5(来自下一段的论文)。
但是请注意,如果标识符的数量确实是问题所在,那么下面的增量方法也不会起作用——在某些时候字典会变得太大。
您可以在下方找到遵循 Updating Formulas and Algorithms for Computing Entropy and Gini Index from Time-Changing Data Streams 描述的概念验证 Python 实现。
import collections
import math
import random
def log2(p):
return math.log(p, 2) if p > 0 else 0
CountChange = collections.namedtuple('CountChange', ('label', 'change'))
class EntropyHolder:
def __init__(self):
self.counts_ = collections.defaultdict(int)
self.entropy_ = 0
self.sum_ = 0
def update(self, count_changes):
r = sum([change for _, change in count_changes])
residual = self._compute_residual(count_changes)
self.entropy_ = self.sum_ * (self.entropy_ - log2(self.sum_ / (self.sum_ + r))) / (self.sum_ + r) - residual
self._update_counts(count_changes)
return self.entropy_
def _compute_residual(self, count_changes):
r = sum([change for _, change in count_changes])
residual = 0
for label, change in count_changes:
p_new = (self.counts_[label] + change) / (self.sum_ + r)
p_old = self.counts_[label] / (self.sum_ + r)
residual += p_new * log2(p_new) - p_old * log2(p_old)
return residual
def _update_counts(self, count_changes):
for label, change in count_changes:
self.sum_ += change
self.counts_[label] += change
def entropy(self):
return self.entropy_
def naive_entropy(counts):
s = sum(counts)
return sum([-(r/s) * log2(r/s) for r in counts])
if __name__ == '__main__':
print(naive_entropy([1, 1]))
print(naive_entropy([1, 1, 1, 1]))
entropy = EntropyHolder()
freq = collections.defaultdict(int)
for _ in range(100):
index = random.randint(0, 5)
entropy.update([CountChange(index, 1)])
freq[index] += 1
print(naive_entropy(freq.values()))
print(entropy.entropy())
感谢@blazs 提供 entropy_holder class。这解决了问题。所以想法是从 (https://gist.github.com/blazs/4fc78807a96976cc455f49fc0fb28738) 导入 entropy_holder.py 并用它来存储以前的熵,并在新标识符出现时在每一步更新。
所以最小的工作代码应该是这样的:
import entropy_holder
input_data = [["1","2008-01-06T02:13:38Z","foo,bar"], ["2","2008-01-06T02:12:13Z","bar,blup"], ["3","2008-01-06T02:13:55Z","foo,bar"],
["4","2008-01-06T02:12:28Z","foo,xy"], ["5","2008-01-06T02:12:44Z","foo,bar"], ["6","2008-01-06T02:13:00Z","foo,bar"],
["7","2008-01-06T02:13:00Z","x,y"]]
entropy = entropy_holder.EntropyHolder() # This class will hold the current entropy and counts of identifiers
for item in input_data:
for identifier in item[2].split(","):
entropy.update([entropy_holder.CountChange(identifier, 1)])
print(entropy.entropy())
使用 Blaz 的增量公式得到的熵非常接近class逻辑方法计算出的熵,并且避免了一次又一次地迭代所有数据。