从扫帚整理没有从主题模型中找到 LDA 的方法
tidy from broom not finding method for LDA from topicmodels
运行 这个脚本,直接来自 'Text mining with R',
library(topicmodels)
library(broom)
data("AssociatedPress")
ap_lda <- LDA(AssociatedPress, k = 2, control = list(seed = 1234))
tidy(ap_lda)
我收到此错误消息:
Error in as.data.frame.default(x) :
cannot coerce class "structure("LDA_VEM", package = "topicmodels")" to a >data.frame
In addition: Warning message:
In tidy.default(ap_lda) :
No method for tidying an S3 object of class LDA_VEM , using as.data.frame
packageVersion("broom")
‘0.4.3’
packageVersion("topicmodels")
‘0.2.7’
sessionInfo()
R 版本 3.4.3 (2017-11-30)
平台:x86_64-w64-mingw32/x64(64 位)
运行 下:Windows >= 8 x64(内部版本 9200)
矩阵产品:默认
附加基础包:
[1] stats graphics grDevices utils 数据集方法基础
其他附包:
[1] broom_0.4.3 topicmodels_0.2-7
通过命名空间加载(未附加):
[1] NLP_0.1-11 Rcpp_0.12.15 compiler_3.4.3 pillar_1.1.0 plyr_1.8.4
[6] bindr_0.1 base64enc_0.1-3 keras_2.1.3 tools_3.4.3 zeallot_0.1.0
[11] jsonlite_1.5 tibble_1.4.2 nlme_3.1-131 lattice_0.20-35 pkgconfig_2.0.1
[16] rlang_0.1.6 psych_1.7.8 yaml_2.1.16 parallel_3.4.3 bindrcpp_0.2
[21] stringr_1.2.0 dplyr_0.7.4 xml2_1.2.0 stats4_3.4.3 grid_3.4.3
[26] reticulate_1.4 glue_1.2.0 R6_2.2.2 foreign_0.8-69 tidyr_0.8.0
[31] purrr_0.2.4 reshape2_1.4.3 magrittr_1.5 whisker_0.3-2 tfruns_1.2
[36] modeltools_0.2-21 assertthat_0.2.0 mnormt_1.5-5 tensorflow_1.5 stringi_1.1.6
[41] slam_0.1-42 tm_0.7-3
tidytext
包似乎扩展了broom
包中使用的一些方法...
所以使用 tidytext
中的 tidy
函数确实有效:
broom::tidy(ap_lda, matrix = "beta")
Error in as.data.frame.default(x) :
cannot coerce class "structure("LDA_VEM", package = "topicmodels")" to a data.frame
In addition: Warning message:
In tidy.default(ap_lda, matrix = "beta") :
No method for tidying an S3 object of class LDA_VEM , using as.data.frame
tidytext::tidy(ap_lda, matrix = "beta")
# A tibble: 20,946 x 3
topic term beta
<int> <chr> <dbl>
1 1 aaron 0.00000000000169
2 2 aaron 0.0000390
3 1 abandon 0.0000265
4 2 abandon 0.0000399
5 1 abandoned 0.000139
6 2 abandoned 0.0000588
7 1 abandoning 0.00000000000000000000000000000000245
8 2 abandoning 0.0000234
9 1 abbott 0.00000213
10 2 abbott 0.0000297
# ... with 20,936 more rows
当我加载 tidytext
: library(tidytext)
时,这会自动为我工作,无需指定。即tidy(ap_lda, ...)
。我可以从您的会话信息中看到 tidytext
未加载。
运行 这个脚本,直接来自 'Text mining with R',
library(topicmodels)
library(broom)
data("AssociatedPress")
ap_lda <- LDA(AssociatedPress, k = 2, control = list(seed = 1234))
tidy(ap_lda)
我收到此错误消息:
Error in as.data.frame.default(x) : cannot coerce class "structure("LDA_VEM", package = "topicmodels")" to a >data.frame In addition: Warning message: In tidy.default(ap_lda) : No method for tidying an S3 object of class LDA_VEM , using as.data.frame
packageVersion("broom")
‘0.4.3’
packageVersion("topicmodels")
‘0.2.7’
sessionInfo()
R 版本 3.4.3 (2017-11-30) 平台:x86_64-w64-mingw32/x64(64 位) 运行 下:Windows >= 8 x64(内部版本 9200)
矩阵产品:默认
附加基础包: [1] stats graphics grDevices utils 数据集方法基础
其他附包: [1] broom_0.4.3 topicmodels_0.2-7
通过命名空间加载(未附加):
[1] NLP_0.1-11 Rcpp_0.12.15 compiler_3.4.3 pillar_1.1.0 plyr_1.8.4
[6] bindr_0.1 base64enc_0.1-3 keras_2.1.3 tools_3.4.3 zeallot_0.1.0
[11] jsonlite_1.5 tibble_1.4.2 nlme_3.1-131 lattice_0.20-35 pkgconfig_2.0.1
[16] rlang_0.1.6 psych_1.7.8 yaml_2.1.16 parallel_3.4.3 bindrcpp_0.2
[21] stringr_1.2.0 dplyr_0.7.4 xml2_1.2.0 stats4_3.4.3 grid_3.4.3
[26] reticulate_1.4 glue_1.2.0 R6_2.2.2 foreign_0.8-69 tidyr_0.8.0
[31] purrr_0.2.4 reshape2_1.4.3 magrittr_1.5 whisker_0.3-2 tfruns_1.2
[36] modeltools_0.2-21 assertthat_0.2.0 mnormt_1.5-5 tensorflow_1.5 stringi_1.1.6
[41] slam_0.1-42 tm_0.7-3
tidytext
包似乎扩展了broom
包中使用的一些方法...
所以使用 tidytext
中的 tidy
函数确实有效:
broom::tidy(ap_lda, matrix = "beta")
Error in as.data.frame.default(x) :
cannot coerce class "structure("LDA_VEM", package = "topicmodels")" to a data.frame
In addition: Warning message:
In tidy.default(ap_lda, matrix = "beta") :
No method for tidying an S3 object of class LDA_VEM , using as.data.frame
tidytext::tidy(ap_lda, matrix = "beta")
# A tibble: 20,946 x 3
topic term beta
<int> <chr> <dbl>
1 1 aaron 0.00000000000169
2 2 aaron 0.0000390
3 1 abandon 0.0000265
4 2 abandon 0.0000399
5 1 abandoned 0.000139
6 2 abandoned 0.0000588
7 1 abandoning 0.00000000000000000000000000000000245
8 2 abandoning 0.0000234
9 1 abbott 0.00000213
10 2 abbott 0.0000297
# ... with 20,936 more rows
当我加载 tidytext
: library(tidytext)
时,这会自动为我工作,无需指定。即tidy(ap_lda, ...)
。我可以从您的会话信息中看到 tidytext
未加载。