如何在 pandas 中考虑 NaN 生成序列

How to generate sequence considering NaN in pandas

我有一个包含 NaN 和 True 作为值的系列。我希望另一个系列生成一个数字序列,这样每当 NaN 出现时将该系列值设置为 0 并且在两个 NaN 行之间我需要执行 cumcount。

输入:

colA
NaN
True
True
True
True
NaN
True
NaN
NaN
True
True
True
True
True

输出

ColA    Sequence
NaN     0
True    0
True    1
True    2
True    3
NaN     0
True    0
NaN     0
NaN     0
True    0
True    1
True    2
True    3
True    4

如何在 pandas 中执行此操作?

你可以在这里使用 groupby + cumcount + mask:

m = df.colA.isnull()
df['Sequence'] = df.groupby(m.cumsum()).cumcount().sub(1).mask(m, 0)

或者,在最后一步使用 clip_lower 并且您不必预先缓存 m:

df['Sequence'] = df.groupby(df.colA.isnull().cumsum()).cumcount().sub(1).clip_lower(0)

df

    colA  Sequence
0    NaN         0
1   True         0
2   True         1
3   True         2
4   True         3
5    NaN         0
6   True         0
7    NaN         0
8    NaN         0
9   True         0
10  True         1
11  True         2
12  True         3
13  True         4

计时

df = pd.concat([df] * 10000, ignore_index=True)

# Timing the alternatives in this answer

%%timeit
m = df.colA.isnull()
df.groupby(m.cumsum()).cumcount().sub(1).mask(m, 0)

23.3 ms ± 1.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
df.groupby(df.colA.isnull().cumsum()).cumcount().sub(1).clip_lower(0)

24.1 ms ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

# @user2314737's solution

%%timeit
df.groupby((df['colA'] != df['colA'].shift(1)).cumsum()).cumcount()

29.8 ms ± 345 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

# @jezrael's solution

%%timeit
a = df['colA'].isnull()
b = a.cumsum()
(b-b.where(~a).add(1).ffill().fillna(0).astype(int)).clip_lower(0)

11.5 ms ± 253 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

请注意,您的里程数可能因数据而异。

如果性能很重要,最好不要使用 groupby 连续计数 Trues:

a = df['colA'].notnull()
b = a.cumsum()
df['Sequence'] = (b-b.mask(a).add(1).ffill().fillna(0).astype(int)).where(a, 0)
print (df)
    colA  Sequence
0    NaN         0
1   True         0
2   True         1
3   True         2
4   True         3
5    NaN         0
6   True         0
7    NaN         0
8    NaN         0
9   True         0
10  True         1
11  True         2
12  True         3
13  True         4

说明:

df = pd.DataFrame({'colA':[np.nan,True,True,True,True,np.nan,
                           True,np.nan,np.nan,True,True,True,True,True]})

a = df['colA'].notnull()
#cumulative sum, Trues are processes like 1
b = a.cumsum()
#replace Trues from a to NaNs
c = b.mask(a)
#add 1 for count from 0
d = b.mask(a).add(1)
#forward fill NaNs, replace possible first NaNs to 0 and cast to int
e = b.mask(a).add(1).ffill().fillna(0).astype(int)
#substract b for counts
f = b-b.mask(a).add(1).ffill().fillna(0).astype(int)
#replace -1 to 0 by mask a
g = (b-b.mask(a).add(1).ffill().fillna(0).astype(int)).where(a, 0)

#all together
df = pd.concat([a,b,c,d,e,f,g], axis=1, keys=list('abcdefg'))
print (df)
        a   b    c    d  e  f  g
0   False   0  0.0  1.0  1 -1  0
1    True   1  NaN  NaN  1  0  0
2    True   2  NaN  NaN  1  1  1
3    True   3  NaN  NaN  1  2  2
4    True   4  NaN  NaN  1  3  3
5   False   4  4.0  5.0  5 -1  0
6    True   5  NaN  NaN  5  0  0
7   False   5  5.0  6.0  6 -1  0
8   False   5  5.0  6.0  6 -1  0
9    True   6  NaN  NaN  6  0  0
10   True   7  NaN  NaN  6  1  1
11   True   8  NaN  NaN  6  2  2
12   True   9  NaN  NaN  6  3  3
13   True  10  NaN  NaN  6  4  4

试试这个:

df['Sequence']=df.groupby((df['colA'] != df['colA'].shift(1)).cumsum()).cumcount()

完整示例:

>>> df = pd.DataFrame({'colA':[np.NaN,True,True,True,True,np.NaN,True,np.NaN,np.NaN,True,True,True,True,True]})
>>> df['Sequence']=df.groupby((df['colA'] != df['colA'].shift(1)).cumsum()).cumcount()
>>> df
    colA  Sequence
0    NaN         0
1   True         0
2   True         1
3   True         2
4   True         3
5    NaN         0
6   True         0
7    NaN         0
8    NaN         0
9   True         0
10  True         1
11  True         2
12  True         3
13  True         4

聚会迟到了,但这里有一个 numpy 封装在函数中的解决方案:

import pandas as pd, numpy as np

df = pd.DataFrame({'ColA': [np.nan, True, True, True, True, np.nan, True,
                            np.nan, np.nan, True, True, True, True, True]})

def return_cumsum(df):
    v = np.array(df.ColA, dtype=float)
    n = np.isnan(v)
    v[n] = -np.diff(np.concatenate(([0.], np.cumsum(~n)[n])))
    df['Sequence'] = np.array(np.maximum(0, np.cumsum(v)-1), dtype=int)
    return df

df = return_cumsum(df)

#     ColA  Sequence
# 0    NaN         0
# 1   True         0
# 2   True         1
# 3   True         2
# 4   True         3
# 5    NaN         0
# 6   True         0
# 7    NaN         0
# 8    NaN         0
# 9   True         0
# 10  True         1
# 11  True         2
# 12  True         3
# 13  True         4