如何保存神经网络的权重
How to save weights of a neural network
我在将经过训练的神经网络的权重保存在文本文件中时遇到问题。
这是我的代码
def nNetwork(trainingData,filename):
lamda = 1
input_layer = 1200
output_layer = 10
hidden_layer = 25
X=trainingData[0]
y=trainingData[1]
theta1 = randInitializeWeights(1200,25)
theta2 = randInitializeWeights(25,10)
m,n = np.shape(X)
yk = recodeLabel(y,output_layer)
theta = np.r_[theta1.T.flatten(), theta2.T.flatten()]
X_bias = np.r_[np.ones((1,X.shape[0])), X.T]
#conjugate gradient algo
result = scipy.optimize.fmin_cg(computeCost,fprime=computeGradient,x0=theta,args=(input_layer,hidden_layer,output_layer,X,y,lamda,yk,X_bias),maxiter=100,disp=True,full_output=True )
print result[1] #min value
theta1,theta2 = paramUnroll(result[0],input_layer,hidden_layer,output_layer)
counter = 0
for i in range(m):
prediction = predict(X[i],theta1,theta2)
actual = y[i]
if(prediction == actual):
counter+=1
print str(counter *100/m) + '% accuracy'
data = {"Theta1":[theta1],
"Theta2":[theta2]}
op=open(filename,'w')
json.dump(data,op)
op.close()
def paramUnroll(params,input_layer,hidden_layer,labels):
theta1_elems = (input_layer+1)*hidden_layer
theta1_size = (input_layer+1,hidden_layer)
theta2_size = (hidden_layer+1,labels)
theta1 = params[:theta1_elems].T.reshape(theta1_size).T
theta2 = params[theta1_elems:].T.reshape(theta2_size).T
return theta1, theta2
我收到以下错误
提高类型错误(repr(o)+“不是JSON可序列化”)
请提供解决方案或任何其他方法来保存权重,以便我可以轻松地在其他代码中加载它们。
将numpy数组保存为纯文本最简单的方法是执行numpy.savetxt
(and load it with numpy.loadtxt
). However, if you want to save both using the JSON format you can write the files using a StringIO instance:
with StringIO as theta1IO:
numpy.savetxt(theta1IO, theta1)
data = {"theta1": theta1IO.getvalue() }
# write as JSON as usual
您也可以使用其他参数来做到这一点。
要检索您可以执行的数据:
# read data from JSON
with StringIO as theta1IO:
theta1IO.write(data['theta1'])
theta1 = numpy.loadtxt(theta1IO)
我在将经过训练的神经网络的权重保存在文本文件中时遇到问题。 这是我的代码
def nNetwork(trainingData,filename):
lamda = 1
input_layer = 1200
output_layer = 10
hidden_layer = 25
X=trainingData[0]
y=trainingData[1]
theta1 = randInitializeWeights(1200,25)
theta2 = randInitializeWeights(25,10)
m,n = np.shape(X)
yk = recodeLabel(y,output_layer)
theta = np.r_[theta1.T.flatten(), theta2.T.flatten()]
X_bias = np.r_[np.ones((1,X.shape[0])), X.T]
#conjugate gradient algo
result = scipy.optimize.fmin_cg(computeCost,fprime=computeGradient,x0=theta,args=(input_layer,hidden_layer,output_layer,X,y,lamda,yk,X_bias),maxiter=100,disp=True,full_output=True )
print result[1] #min value
theta1,theta2 = paramUnroll(result[0],input_layer,hidden_layer,output_layer)
counter = 0
for i in range(m):
prediction = predict(X[i],theta1,theta2)
actual = y[i]
if(prediction == actual):
counter+=1
print str(counter *100/m) + '% accuracy'
data = {"Theta1":[theta1],
"Theta2":[theta2]}
op=open(filename,'w')
json.dump(data,op)
op.close()
def paramUnroll(params,input_layer,hidden_layer,labels):
theta1_elems = (input_layer+1)*hidden_layer
theta1_size = (input_layer+1,hidden_layer)
theta2_size = (hidden_layer+1,labels)
theta1 = params[:theta1_elems].T.reshape(theta1_size).T
theta2 = params[theta1_elems:].T.reshape(theta2_size).T
return theta1, theta2
我收到以下错误 提高类型错误(repr(o)+“不是JSON可序列化”)
请提供解决方案或任何其他方法来保存权重,以便我可以轻松地在其他代码中加载它们。
将numpy数组保存为纯文本最简单的方法是执行numpy.savetxt
(and load it with numpy.loadtxt
). However, if you want to save both using the JSON format you can write the files using a StringIO instance:
with StringIO as theta1IO:
numpy.savetxt(theta1IO, theta1)
data = {"theta1": theta1IO.getvalue() }
# write as JSON as usual
您也可以使用其他参数来做到这一点。
要检索您可以执行的数据:
# read data from JSON
with StringIO as theta1IO:
theta1IO.write(data['theta1'])
theta1 = numpy.loadtxt(theta1IO)