创建 numpy 函数并转换为张量

Creating numpy functions and converting to tensor

我正在尝试使用 numpy 创建函数,例如 f=(x-a1)^2+(y-a2)^2+a3

其中a1,a2,a3是随机生成的数字,x,y是参数。

但我无法使用它,我想找到 f(0,0),其中 [0,0] 是 [x,y] 并且 [a1,a2,a3] 是之前设置的,但我的代码没有工作。 然后我想将此函数转换为 tensorflow tensor.Here 是我的代码,带有“##”的字符串不起作用。

import tensorflow as tf
from random import random, seed
import numpy as np


def mypolyval(x, min_point, min_value):
    res = min_value
    for i in range(len(min_point)):
        res += (x[i] - min_point[i]) ** 2
    return res


class FunGen:
    def __init__(self, dim, n):
        self.dim = dim
        self.n = n
        self.functions = []
        self.x = []

    def c2(self):
        seed(10)
        for _ in range(self.n):
            min_point = [random() for _ in range(self.dim)]
            min_value = random()
            f = np.vectorize(mypolyval, excluded=['x'])

            ##print(f(x=np.array([0, 0]), min_point=min_point, min_value=min_value))
            self.functions.append((f, min_point, min_value))
        return self.functions


functions = FunGen(2, 1).c2()
for i in functions:
    print(type(i[0]))
    f=i[0]
   ## print(f(x=[0, 0], min_value=i[1], min_point=i[2]))
    ##a=tf.convert_to_tensor(f,dtype=np.float32)

要从 numpy 函数创建 TensorFlow 函数,您应该使用 tf.py_func:

Wraps a python function and uses it as a TensorFlow op.

来自 TensorFlow API:

def my_func(x):
  # x will be a numpy array with the contents of the placeholder below
  return np.sinh(x)
inp = tf.placeholder(tf.float32)
y = tf.py_func(my_func, [inp], tf.float32)

问题与tensorflow无关。行

min_point = [random() for _ in range(self.dim)]

创建一个列表,列表没有 .size() 属性。

你可以使用 min_point = np.array([random() for _ in range(self.dim)])) 将它变成一个 numpy 数组,然后 .size() 就可以了。

或者,如果您想坚持使用列表,请使用 for i in range(len(min_point)),它会计算列表的长度。

您还需要将 min_pointmin_value 添加到排除列表中:

from random import random, seed
import numpy as np


def mypolyval(x, min_point, min_value):

    print('x', x)
    print('min_point', min_point)
    print('min_value', min_value)
    res = min_value
    for i in range(len(min_point)):
        res += (x[i] - min_point[i]) ** 2
    return res


class FunGen:
    def __init__(self, dim, n):
        self.dim = dim
        self.n = n
        self.functions = []
        self.x = []

    def c2(self):
        seed(10)
        for _ in range(self.n):
            min_point = [random() for _ in range(self.dim)]
            min_value = random()
            f = np.vectorize(mypolyval, excluded=['x', 'min_point', 'min_value'])
            #print(f(x=[0, 0], min_value=min_value, min_point=min_point))
            self.functions.append((f, min_point, min_value))
        return self.functions


functions = FunGen(2, 1).c2()
for i in functions:
    print(type(i[0]))
    print(i)
    f=i[0]
    print(f(x=[0, 0], min_value=i[2], min_point=i[1]))