parallel dask for 循环比常规循环慢?

parallel dask for loop slower than regular loop?

如果我尝试将 for 循环与 dask 并行化,它最终会比常规版本执行得更慢。基本上,我只是按照 dask 教程中的介绍性示例进行操作,但由于某种原因,它最终失败了。我做错了什么?

In [1]: import numpy as np
   ...: from dask import delayed, compute
   ...: import dask.multiprocessing

In [2]: a10e4 = np.random.rand(10000, 11).astype(np.float16)
   ...: b10e4 = np.random.rand(10000, 11).astype(np.float16)

In [3]: def subtract(a, b):
   ...:     return a - b

In [4]: %%timeit
   ...: results = [subtract(a10e4, b10e4[index]) for index in range(len(b10e4))]
1 loop, best of 3: 10.6 s per loop

In [5]: %%timeit
   ...: values = [delayed(subtract)(a10e4, b10e4[index]) for index in range(len(b10e4)) ]
   ...: resultsDask = compute(*values, get=dask.multiprocessing.get)
1 loop, best of 3: 14.4 s per loop

两个问题:

  1. Dask 为每个任务引入了大约一毫秒的开销。您需要确保您的计算时间比这长得多。
  2. 使用多处理调度程序时,数据会在进程之间序列化,这可能会非常昂贵。参见 http://dask.pydata.org/en/latest/setup.html