使用阈值在层次聚类中自动化聚类

Automating Clusters in Hierarchical clustering using threshold

我想在层次聚类过程中自动化阈值过程,我想做的是,而不是手动输入阈值,我如何检查我是否有 30 到 50 范围内的集群,如果集群不是在 30-50 范围内,通过代码更改阈值,在 python

中按 0.1 或 0.2
    import pickle
    import re
    import string
    import sys
    # import gensim
    # from gensim import corpora
    from time import time

    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import scipy.cluster.hierarchy as sch
    from nltk.corpus import stopwords
    from nltk.stem.wordnet import WordNetLemmatizer
    from scipy.cluster.hierarchy import dendrogram, linkage
    from scipy.spatial.distance import pdist
    from scipy.spatial.distance import squareform
    from sklearn.decomposition import NMF, LatentDirichletAllocation
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.feature_extraction.text import TfidfVectorizer
    from stop_word_complaints import complaint_stop_words

 tfidf_vectorizer = TfidfVectorizer(ngram_range=(1, 2), max_df=0.95, min_df=1, token_pattern=r'\b\w+\b',
                                       max_features=n_features, stop_words=list(stop), analyzer='word')
    X = tfidf_vectorizer.fit_transform(corpus).toarray()

    non_zero_features = np.where(np.sum(X, axis=1) != 0)[0]
    print("done in %0.3fs." % (time() - t0))
    print("pdist ...")
    t0 = time()
    cos_dist = pdist(X[non_zero_features, :], 'cosine')
    print("done in %0.3fs." % (time() - t0))
    dists = np.asarray(squareform(cos_dist))
    dists[np.isnan(dists)] = 1
    # cos_dist[np.isnan(cos_dist)] = 0
    # dists[np.argwhere(np.isnan(dists))] = 1
    print("linkage ...")
    np.savetxt(str_path + "_dist_1.csv", dists, delimiter=',')
    # pickle.dump(dists, open(str_path + "_dist.p", "wb"))
    t0 = time()
    linkage_matrix = linkage(dists, "average")
    print("done in %0.3fs." % (time() - t0))
    np.savetxt(str_path + "linkage_matrix.csv", linkage_matrix, delimiter=',')
    # linkage_matrix = np.loadtxt(str_path + "linkage_matrix.csv", delimiter=',')
    # pickle.dump(linkage_matrix, open(str_path + "linkage_matrix.p", "wb"))
    dendrogram(linkage_matrix)
    # create figure & 1 axis
    fig, ax = plt.subplots(nrows=1, ncols=1)  # create figure & 1 axis

    plt.title('Hierarchical Clustering Dendrogram')
    plt.xlabel('sample index')
    plt.ylabel('distance')
    dendrogram(
        linkage_matrix
        # leaf_rotation=90.,  # rotates the x axis labels
        # leaf_font_size=3.,  # font size for the x axis labels
    )
    plt.show()
    fig.savefig(str_path + 'Agglo_Heirachy_dendo.png')  # save the figure to file

min_th = min(linkage_matrix[:,2])
max_th = max(linkage_matrix[:,2])
clusters =  get_clusters(linkage_matrix, min_th, max_th)

我终于找到了解决方案,我定义了新函数,在该函数中我获得了范围内的所需集群

def get_clusters(linkage_matrix, min_th, max_th):
    while (True):
        print("----------------\n")
        th = min_th + (max_th - min_th) / 2
        clusters = sch.fcluster(linkage_matrix, th, 'distance')
        if  max(clusters) >= 30 and  max(clusters) <= 50:
            print("Clusters found: %d" % max(clusters))
            return clusters

        elif  max(clusters) > 50:
            min_th = th
            print("Clusters found: %d" % max(clusters))
            continue

        elif  max(clusters) < 30:
            max_th = th
            print("Clusters found: %d" % max(clusters))
            continue