如何在 pandas DataFrame 中替换多个分类中的值

How to replace values in multiple categoricals in a pandas DataFrame

我想替换包含多个分类的数据框中的某些值。

df = pd.DataFrame({'s1': ['a', 'b', 'c'], 's2': ['a', 'c', 'd']}, dtype='category')

如果我在单个列上应用 .replace,结果如预期:

>>> df.s1.replace('a', 1)
0    1
1    b
2    c
Name: s1, dtype: object

如果我对整个数据帧应用相同的操作,则会显示错误(简短版本):

>>> df.replace('a', 1)
ValueError: Cannot setitem on a Categorical with a new category, set the categories first

During handling of the above exception, another exception occurred:
ValueError: Wrong number of dimensions

如果数据框包含整数作为类别,则会发生以下情况:

df = pd.DataFrame({'s1': [1, 2, 3], 's2': [1, 3, 4]}, dtype='category')

>>> df.replace(1, 3)
    s1  s2
0   3   3
1   2   3
2   3   4

但是,

>>> df.replace(1, 2)
ValueError: Wrong number of dimensions

我错过了什么?

没有挖掘,这对我来说似乎是错误的。

我的工作
pd.DataFrame.applypd.Series.replace
这样做的好处是您无需更改任何类型。

df = pd.DataFrame({'s1': [1, 2, 3], 's2': [1, 3, 4]}, dtype='category')
df.apply(pd.Series.replace, to_replace=1, value=2)

  s1  s2
0  2   2
1  2   3
2  3   4

df = pd.DataFrame({'s1': ['a', 'b', 'c'], 's2': ['a', 'c', 'd']}, dtype='category')
df.apply(pd.Series.replace, to_replace='a', value=1)

  s1 s2
0  1  1
1  b  c
2  c  d

@cᴏʟᴅsᴘᴇᴇᴅ的工作

df = pd.DataFrame({'s1': ['a', 'b', 'c'], 's2': ['a', 'c', 'd']}, dtype='category')
df.applymap(str).replace('a', 1)

  s1 s2
0  1  1
1  b  c
2  c  d

这种行为的原因是每列的分类值集不同:

In [224]: df.s1.cat.categories
Out[224]: Index(['a', 'b', 'c'], dtype='object')

In [225]: df.s2.cat.categories
Out[225]: Index(['a', 'c', 'd'], dtype='object')

因此,如果您要替换为 两个 类别中的值,它将起作用:

In [226]: df.replace('d','a')
Out[226]:
  s1 s2
0  a  a
1  b  c
2  c  a

作为一种解决方案,您可能希望手动将列分类,使用:

pd.Categorical(..., categories=[...])

其中类别将具有所有列的所有可能值...