等式之间的旁注(左)
Side comment between equation (LEFT)
找到了如下页面,差不多就是我想要的https://tex.stackexchange.com/questions/344379/side-comment-between-equation/344386#344386
谁能解释一下我必须做些什么才能将这个箭头放在等式的左边?因为这就是我现在拥有的 wrong arrow
提前致谢
您需要:
- 将
tikzmark
移到等式的另一边;
- 反转曲线:
.. controls +(-1,0) and +(-1,0) ..
;
- 重新调整起始位置:
\newcommand\sidecomment[5][-0.5,0.1]%
;
- 将附加到曲线的文本移动并对齐到另一侧:
node[left,align=right]{#5}
。
结果如下:
\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{tikzmark,arrows,calc}
\usepackage{amsmath}
\newcommand\sidecomment[5][-0.5,0.1]%
{\begin{tikzpicture}[remember picture,overlay]
\draw[-stealth',thick]
($({pic cs:#4}|-{pic cs:#2})+(#1)$)
.. controls +(-1,0) and +(-1,0) ..
node[left,align=right]{#5}
($({pic cs:#4}|-{pic cs:#3})+(#1)$);
\end{tikzpicture}%
}
\begin{document}
\begin{align*}
\tikzmark{a}\beta_1^*
&= \frac{\sum_{i=1}^n(x_i^*-\hat x^*)y_i^*}{\sum_{i=1}^n(x_i^*-\hat x^*)^2}\
\tikzmark{b}&= \frac{\sum_{i=1}^n(w_2x_i-w_2\hat x)w_1y_i}{\sum_{i=1}^n(w_2x_i-w_2\hat x)^2}
\end{align*}
\sidecomment{a}{b}{b}{since $y_i^*=w_1y_i$\and $x_i*=w_2x_i$}
\end{document}
找到了如下页面,差不多就是我想要的https://tex.stackexchange.com/questions/344379/side-comment-between-equation/344386#344386
谁能解释一下我必须做些什么才能将这个箭头放在等式的左边?因为这就是我现在拥有的 wrong arrow
提前致谢
您需要:
- 将
tikzmark
移到等式的另一边; - 反转曲线:
.. controls +(-1,0) and +(-1,0) ..
; - 重新调整起始位置:
\newcommand\sidecomment[5][-0.5,0.1]%
; - 将附加到曲线的文本移动并对齐到另一侧:
node[left,align=right]{#5}
。
结果如下:
\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{tikzmark,arrows,calc}
\usepackage{amsmath}
\newcommand\sidecomment[5][-0.5,0.1]%
{\begin{tikzpicture}[remember picture,overlay]
\draw[-stealth',thick]
($({pic cs:#4}|-{pic cs:#2})+(#1)$)
.. controls +(-1,0) and +(-1,0) ..
node[left,align=right]{#5}
($({pic cs:#4}|-{pic cs:#3})+(#1)$);
\end{tikzpicture}%
}
\begin{document}
\begin{align*}
\tikzmark{a}\beta_1^*
&= \frac{\sum_{i=1}^n(x_i^*-\hat x^*)y_i^*}{\sum_{i=1}^n(x_i^*-\hat x^*)^2}\
\tikzmark{b}&= \frac{\sum_{i=1}^n(w_2x_i-w_2\hat x)w_1y_i}{\sum_{i=1}^n(w_2x_i-w_2\hat x)^2}
\end{align*}
\sidecomment{a}{b}{b}{since $y_i^*=w_1y_i$\and $x_i*=w_2x_i$}
\end{document}