Rasa nlu 教程不起作用
Rasa nlu tutorial doesn't work
Rasa NLU 版本 (0.11.3):
使用的后端/管道(spacy_sklearn):
操作系统(osx):
问题:我尝试按照教程进行操作:https://rasahq.github.io/rasa_nlu/tutorial.html?highlight=project#、
- 已安装 spaCy + sklearn
- 已创建config_spacy.json
已下载示例文件和训练
我已经测试了问候和再见的意图,它们是有效的
但是当我用命令测试时:
curl -X POST localhost:5000/parse -d '{"q":"I am looking for Mexican food"}' | python -m json.tool
它returns:
{
"intent": {
"name": "None",
"confidence": 1.0
},
"entities": [],
"text": "yes"
}
配置文件的内容(如果使用且相关):
{
"project": null,
"fixed_model_name": null,
"config": "config.json",
"data": null,
"emulate": null,
"language": "en",
"log_file": null,
"log_level": "INFO",
"mitie_file": "data/total_word_feature_extractor.dat",
"spacy_model_name": null,
"num_threads": 1,
"max_training_processes": 1,
"path": "/rasa_nlu/projects",
"port": 5000,
"token": null,
"cors_origins": [],
"max_number_of_ngrams": 7,
"pipeline": [],
"response_log": "/rasa_nlu/logs",
"storage": null,
"aws_endpoint_url": null,
"duckling_dimensions": null,
"duckling_http_url": null,
"ner_crf": {
"BILOU_flag": true,
"features": [
[
"low",
"title",
"upper",
"pos",
"pos2"
],
[
"bias",
"low",
"word3",
"word2",
"upper",
"title",
"digit",
"pos",
"pos2",
"pattern"
],
[
"low",
"title",
"upper",
"pos",
"pos2"
]
],
"max_iterations": 50,
"L1_c": 1,
"L2_c": 0.001
},
"intent_classifier_sklearn": {
"C": [
1,
2,
5,
10,
20,
100
],
"kernel": "linear"
}
}
状态:
{
"available_projects": {
"default": {
"status": "ready",
"available_models": [
"fallback"
]
}
}
}
在您的配置文件中,管道设置为 []
,但需要正确配置。管道配置选项的文档可以在 here. The available options are discussed here.
中找到
管道可以是 pre-configured 管道,例如:mitie、spacy_sklearn 或 关键字。它也可以是自定义管道,例如:["nlp_spacy"、"ner_crf"、"ner_synonyms"]。我建议将您的管道设置为:
pipeline: "space_sklearn"
更新您的配置文件并重新启动服务器。如果服务器在控制台 window 中仍然 运行,请按 Ctrl + c
停止它。然后re-enter你用来启动它的命令。
Rasa NLU 版本 (0.11.3):
使用的后端/管道(spacy_sklearn):
操作系统(osx):
问题:我尝试按照教程进行操作:https://rasahq.github.io/rasa_nlu/tutorial.html?highlight=project#、
- 已安装 spaCy + sklearn
- 已创建config_spacy.json
已下载示例文件和训练 我已经测试了问候和再见的意图,它们是有效的 但是当我用命令测试时:
curl -X POST localhost:5000/parse -d '{"q":"I am looking for Mexican food"}' | python -m json.tool
它returns:
{
"intent": {
"name": "None",
"confidence": 1.0
},
"entities": [],
"text": "yes"
}
配置文件的内容(如果使用且相关):
{
"project": null,
"fixed_model_name": null,
"config": "config.json",
"data": null,
"emulate": null,
"language": "en",
"log_file": null,
"log_level": "INFO",
"mitie_file": "data/total_word_feature_extractor.dat",
"spacy_model_name": null,
"num_threads": 1,
"max_training_processes": 1,
"path": "/rasa_nlu/projects",
"port": 5000,
"token": null,
"cors_origins": [],
"max_number_of_ngrams": 7,
"pipeline": [],
"response_log": "/rasa_nlu/logs",
"storage": null,
"aws_endpoint_url": null,
"duckling_dimensions": null,
"duckling_http_url": null,
"ner_crf": {
"BILOU_flag": true,
"features": [
[
"low",
"title",
"upper",
"pos",
"pos2"
],
[
"bias",
"low",
"word3",
"word2",
"upper",
"title",
"digit",
"pos",
"pos2",
"pattern"
],
[
"low",
"title",
"upper",
"pos",
"pos2"
]
],
"max_iterations": 50,
"L1_c": 1,
"L2_c": 0.001
},
"intent_classifier_sklearn": {
"C": [
1,
2,
5,
10,
20,
100
],
"kernel": "linear"
}
}
状态:
{
"available_projects": {
"default": {
"status": "ready",
"available_models": [
"fallback"
]
}
}
}
在您的配置文件中,管道设置为 []
,但需要正确配置。管道配置选项的文档可以在 here. The available options are discussed here.
管道可以是 pre-configured 管道,例如:mitie、spacy_sklearn 或 关键字。它也可以是自定义管道,例如:["nlp_spacy"、"ner_crf"、"ner_synonyms"]。我建议将您的管道设置为:
pipeline: "space_sklearn"
更新您的配置文件并重新启动服务器。如果服务器在控制台 window 中仍然 运行,请按 Ctrl + c
停止它。然后re-enter你用来启动它的命令。