如何在 Java 中为 RSA 生成密钥
How to generate keys for RSA in Java
我通过 RSA 将此代码 encrypt/decrypt 一些字符串。该项目用于了解加密,仅为学习目的而构建。到目前为止,我一直使用固定密钥来使用我的应用程序,但现在我想构建一种方法,根据输入的位大小生成有效密钥。
这是我现在的 class:
import java.math.BigInteger;
import java.util.Random;
public class RSAWorker {
public static BigInteger gcdExtended(BigInteger a, BigInteger b) {
BigInteger a_cur = BigInteger.ONE;
BigInteger b_cur = BigInteger.ZERO;
BigInteger a_next = BigInteger.ZERO;
BigInteger b_next = BigInteger.ONE;
BigInteger q;
BigInteger r;
do {
q = a.divide(b);
r = a.subtract(q.multiply(b));
BigInteger tmpA = a_next;
BigInteger tmpB = b_next;
a_next = a_cur.subtract(q.multiply(a_next));
b_next = b_cur.subtract(q.multiply(b_next));
a_cur = tmpA;
b_cur = tmpB;
a = b;
b = r;
} while (r.intValue() > 0);
return a_cur;
}
public static char separator = '_';
private BigInteger e = BigInteger.ZERO;
private BigInteger d = BigInteger.ZERO;
private BigInteger n = BigInteger.ZERO;
private ProgressInformant progressSupervisor;
private void inform(long index, long max) {
if (progressSupervisor != null) {
progressSupervisor.prograssAt(Math.round((float) index / max * 100));
}
}
public void generateKeys(int bitSize) {
e = 65537;
d = 1873890542004290369;
n = 11495756297295397069;
}
public BigInteger encode(BigInteger c) {
return c.modPow(e, n);
}
public BigInteger decode(BigInteger c) {
return c.modPow(d, n);
}
public String encode(String str) {
StringBuilder result = new StringBuilder();
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
result.append(encode(BigInteger.valueOf(c)));
result.append(separator);
inform(i + 1, str.length());
if (Thread.interrupted()) {
return null;
}
}
return result.toString();
}
public String decode(String str) {
StringBuilder result = new StringBuilder();
String[] tokens = str.split(separator+"+");
for (int i = 0; i < tokens.length; i++) {
String s = tokens[i];
result.append((char) decode(new BigInteger(s)).intValue());
inform(i + 1, tokens.length);
if (Thread.interrupted()) {
return null;
}
}
return result.toString();
}
public ProgressInformant getProgressSupervisor() {
return progressSupervisor;
}
public void setProgressSupervisor(ProgressInformant progressSupervisor) {
this.progressSupervisor = progressSupervisor;
}
public BigInteger getE() {
return e;
}
public void setE(BigInteger e) {
this.e = e;
}
public BigInteger getD() {
return d;
}
public void setD(BigInteger d) {
this.d = d;
}
public BigInteger getN() {
return n;
}
public void setN(BigInteger n) {
this.n = n;
}
}
看看这篇维基百科文章:RSA Key Generation
它逐步向您展示了如何生成有效密钥。
public void generateKeys(int bitSize) {
Random rnd = new Random();
//1
BigInteger p = BigInteger.probablePrime(bitSize, rnd);
BigInteger q = BigInteger.probablePrime(bitSize, rnd);
//2
n = p.multiply(q);
//3
BigInteger euler = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));
//4
BigInteger x = BigInteger.valueOf(65537);
do {
if (euler.gcd(x).equals(BigInteger.ONE)) {
e = x;
//5
d = gcdExtended(e, euler);
if (d.signum() == 1) {
break;
}
}
x = x.add(BigInteger.ONE);
} while (true);
}
- 选择两个不同的素数 p 和 q(通过 probablePrime)
- 计算 n = pq
- 欧拉总函数
(http://en.wikipedia.org/wiki/Euler%27s_totient_function)
- 选择 e(作为 public 关键指数)
- 通过您现有的 gcdExtended 方法(扩展欧几里德算法)确定 d
我通过 RSA 将此代码 encrypt/decrypt 一些字符串。该项目用于了解加密,仅为学习目的而构建。到目前为止,我一直使用固定密钥来使用我的应用程序,但现在我想构建一种方法,根据输入的位大小生成有效密钥。
这是我现在的 class:
import java.math.BigInteger;
import java.util.Random;
public class RSAWorker {
public static BigInteger gcdExtended(BigInteger a, BigInteger b) {
BigInteger a_cur = BigInteger.ONE;
BigInteger b_cur = BigInteger.ZERO;
BigInteger a_next = BigInteger.ZERO;
BigInteger b_next = BigInteger.ONE;
BigInteger q;
BigInteger r;
do {
q = a.divide(b);
r = a.subtract(q.multiply(b));
BigInteger tmpA = a_next;
BigInteger tmpB = b_next;
a_next = a_cur.subtract(q.multiply(a_next));
b_next = b_cur.subtract(q.multiply(b_next));
a_cur = tmpA;
b_cur = tmpB;
a = b;
b = r;
} while (r.intValue() > 0);
return a_cur;
}
public static char separator = '_';
private BigInteger e = BigInteger.ZERO;
private BigInteger d = BigInteger.ZERO;
private BigInteger n = BigInteger.ZERO;
private ProgressInformant progressSupervisor;
private void inform(long index, long max) {
if (progressSupervisor != null) {
progressSupervisor.prograssAt(Math.round((float) index / max * 100));
}
}
public void generateKeys(int bitSize) {
e = 65537;
d = 1873890542004290369;
n = 11495756297295397069;
}
public BigInteger encode(BigInteger c) {
return c.modPow(e, n);
}
public BigInteger decode(BigInteger c) {
return c.modPow(d, n);
}
public String encode(String str) {
StringBuilder result = new StringBuilder();
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
result.append(encode(BigInteger.valueOf(c)));
result.append(separator);
inform(i + 1, str.length());
if (Thread.interrupted()) {
return null;
}
}
return result.toString();
}
public String decode(String str) {
StringBuilder result = new StringBuilder();
String[] tokens = str.split(separator+"+");
for (int i = 0; i < tokens.length; i++) {
String s = tokens[i];
result.append((char) decode(new BigInteger(s)).intValue());
inform(i + 1, tokens.length);
if (Thread.interrupted()) {
return null;
}
}
return result.toString();
}
public ProgressInformant getProgressSupervisor() {
return progressSupervisor;
}
public void setProgressSupervisor(ProgressInformant progressSupervisor) {
this.progressSupervisor = progressSupervisor;
}
public BigInteger getE() {
return e;
}
public void setE(BigInteger e) {
this.e = e;
}
public BigInteger getD() {
return d;
}
public void setD(BigInteger d) {
this.d = d;
}
public BigInteger getN() {
return n;
}
public void setN(BigInteger n) {
this.n = n;
}
}
看看这篇维基百科文章:RSA Key Generation
它逐步向您展示了如何生成有效密钥。
public void generateKeys(int bitSize) {
Random rnd = new Random();
//1
BigInteger p = BigInteger.probablePrime(bitSize, rnd);
BigInteger q = BigInteger.probablePrime(bitSize, rnd);
//2
n = p.multiply(q);
//3
BigInteger euler = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));
//4
BigInteger x = BigInteger.valueOf(65537);
do {
if (euler.gcd(x).equals(BigInteger.ONE)) {
e = x;
//5
d = gcdExtended(e, euler);
if (d.signum() == 1) {
break;
}
}
x = x.add(BigInteger.ONE);
} while (true);
}
- 选择两个不同的素数 p 和 q(通过 probablePrime)
- 计算 n = pq
- 欧拉总函数 (http://en.wikipedia.org/wiki/Euler%27s_totient_function)
- 选择 e(作为 public 关键指数)
- 通过您现有的 gcdExtended 方法(扩展欧几里德算法)确定 d