如何在 Spacy 中获取所有名词短语

How to get all noun phrases in Spacy

我是 Spacy 的新手,我想从句子中提取 "all" 名词短语。我想知道我该怎么做。我有以下代码:

import spacy

nlp = spacy.load("en")

file = open("E:/test.txt", "r")
doc = nlp(file.read())
for np in doc.noun_chunks:
    print(np.text)

但它 returns 只有基本名词短语,即其中没有任何其他 NP 的短语。也就是说,对于以下短语,我得到以下结果:

短语:We try to explicitly describe the geometry of the edges of the images.

结果:We, the geometry, the edges, the images.

预期结果:We, the geometry, the edges, the images, the geometry of the edges of the images, the edges of the images.

如何获取所有名词短语,包括嵌套短语?

请参阅下面的注释代码递归组合名词。代码灵感来自 Spacy Docs here

import spacy

nlp = spacy.load("en")

doc = nlp("We try to explicitly describe the geometry of the edges of the images.")

for np in doc.noun_chunks: # use np instead of np.text
    print(np)

print()

# code to recursively combine nouns
# 'We' is actually a pronoun but included in your question
# hence the token.pos_ == "PRON" part in the last if statement
# suggest you extract PRON separately like the noun-chunks above

index = 0
nounIndices = []
for token in doc:
    # print(token.text, token.pos_, token.dep_, token.head.text)
    if token.pos_ == 'NOUN':
        nounIndices.append(index)
    index = index + 1


print(nounIndices)
for idxValue in nounIndices:
    doc = nlp("We try to explicitly describe the geometry of the edges of the images.")
    span = doc[doc[idxValue].left_edge.i : doc[idxValue].right_edge.i+1]
    span.merge()

    for token in doc:
        if token.dep_ == 'dobj' or token.dep_ == 'pobj' or token.pos_ == "PRON":
            print(token.text)

对于每个名词块,您还可以获得其下方的子树。 Spacy 提供了两种访问方式:left_edgeright edge 属性和 subtree 属性,其中 returns 是一个 Token 迭代器而不是跨度。 组合 noun_chunks 和它们的子树会导致一些重复,稍后可以将其删除。

这是一个使用 left_edgeright edge 属性的示例

{np.text
  for nc in doc.noun_chunks
  for np in [
    nc, 
    doc[
      nc.root.left_edge.i
      :nc.root.right_edge.i+1]]}                                                                                                                                                                                                                                                                                                                                                                                                                                                 

==>

{'We',
 'the edges',
 'the edges of the images',
 'the geometry',
 'the geometry of the edges of the images',
 'the images'}

请尝试从文本中获取所有名词:

import spacy
nlp = spacy.load("en_core_web_sm")
text = ("We try to explicitly describe the geometry of the edges of the images.")
doc = nlp(text)
print([chunk.text for chunk in doc.noun_chunks])