dplyr: Evaluation error: object '.' not found with gamlss but all good with lm, gam, glm methods
dplyr: Evaluation error: object '.' not found with gamlss but all good with lm, gam, glm methods
上下文:tidyverse
和 dplyr
environment/work-flow。
对于如何解决我在尝试处理回归结果集合时遇到的以下问题,我将不胜感激。
这个最小的可重现性显示了问题
mtcars %>%
gamlss(mpg ~ hp + wt + disp, data = .) %>%
model.frame()
下面的示例说明了更广泛的上下文并按预期工作(生成所示图像)。如果我所做的只是将 ~lm(...)
更改为 ~glm(...)
或 ~gam(...)
:
,它也可以工作
library(tidyverse)
library(broom)
library(gamlss)
library(datasets)
mtcars %>%
nest(-am) %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual")),
fit = map(data, ~lm(mpg ~ hp + wt + disp, data = .)),
results = map(fit, augment)) %>%
unnest(results) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon", y = "Predicted Value") +
theme_bw()
但是,如果我尝试使用~gamlss(...)
如下:
mtcars %>%
nest(-am) %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual")),
fit = map(data, ~gamlss(mpg ~ hp + wt + disp, data = .)),
results = map(fit, augment)) %>%
unnest(results) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon", y = "Predicted Value") +
theme_bw()
我观察到以下错误:
GAMLSS-RS iteration 1: Global Deviance = 58.7658
GAMLSS-RS iteration 2: Global Deviance = 58.7658
GAMLSS-RS iteration 1: Global Deviance = 76.2281
GAMLSS-RS iteration 2: Global Deviance = 76.2281
******************************************************************
Family: c("NO", "Normal")
Call: gamlss(formula = mpg ~ hp + wt + disp, data = .)
Fitting method: RS()
------------------------------------------------------------------
Mu link function: identity
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.811721 3.387118 12.935 4.05e-07 ***
hp 0.001768 0.021357 0.083 0.93584
wt -6.982534 1.998827 -3.493 0.00679 **
disp -0.019569 0.021460 -0.912 0.38559
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8413 0.1961 4.29 0.00105 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------------------------------
No. of observations in the fit: 13
Degrees of Freedom for the fit: 5
Residual Deg. of Freedom: 8
at cycle: 2
Global Deviance: 58.76579
AIC: 68.76579
SBC: 71.59054
******************************************************************
Error in mutate_impl(.data, dots) :
Evaluation error: object '.' not found.
In addition: Warning messages:
1: Deprecated: please use `purrr::possibly()` instead
2: Deprecated: please use `purrr::possibly()` instead
3: Deprecated: please use `purrr::possibly()` instead
4: Deprecated: please use `purrr::possibly()` instead
5: Deprecated: please use `purrr::possibly()` instead
6: In summary.gamlss(model) :
summary: vcov has failed, option qr is used instead
15: stop(list(message = "Evaluation error: object '.' not found.",
call = mutate_impl(.data, dots), cppstack = NULL))
14: .Call(`_dplyr_mutate_impl`, df, dots)
13: mutate_impl(.data, dots)
12: mutate.tbl_df(tbl_df(.data), ...)
11: mutate(tbl_df(.data), ...)
10: as.data.frame(mutate(tbl_df(.data), ...))
9: mutate.data.frame(., am = factor(am, levels = c(0, 1), labels = c("automatic",
"manual")), fit = map(data, ~gamlss(mpg ~ hp + wt + disp,
data = .)), results = map(fit, augment))
8: mutate(., am = factor(am, levels = c(0, 1), labels = c("automatic",
"manual")), fit = map(data, ~gamlss(mpg ~ hp + wt + disp,
data = .)), results = map(fit, augment))
7: function_list[[i]](value)
6: freduce(value, `_function_list`)
5: `_fseq`(`_lhs`)
4: eval(quote(`_fseq`(`_lhs`)), env, env)
3: eval(quote(`_fseq`(`_lhs`)), env, env)
2: withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
1: mtcars %>% nest(-am) %>% mutate(am = factor(am, levels = c(0,
1), labels = c("automatic", "manual")), fit = map(data, ~gamlss(mpg ~
hp + wt + disp, data = .)), results = map(fit, augment)) %>%
unnest(results) %>% ggplot(aes(x = mpg, y = .fitted))
对于需要更改哪些内容才能使此示例按预期工作,是否有人有任何建议?
对于问题所在的任何见解,我将不胜感激。为什么它不起作用。如何诊断此类问题。
model.frame.gamlss
没有正确考虑data
参数的原始环境。
在下面的代码中查看我的评论:
model.frame.gamlss <- function(formula, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ...)
{
object <- formula
dots <- list(...)
what <- if (!is.null(parameter)) {
match.arg(parameter, choices = c("mu", "sigma", "nu", "tau"))
} else match.arg(what)
Call <- object$call
parform <- formula(object, what)
data <- if (!is.null(Call$data)) {
# problem here, as Call$data is .
eval(Call$data)
# instead, this would work:
# eval(Call$data, environment(formula$mu.terms))
# (there is no formula$terms, just mu.terms and sigma.terms)
} else {
environment(formula$terms)
}
Terms <- terms(parform)
mf <- model.frame(
Terms,
data,
xlev = object[[paste(what, "xlevels", sep = ".")]]
)
mf
}
我想应该向 gamlss
维护者提交问题,除非这已经完成。
基于 RolnadASc 的部分答案...
原始问题的中间数据集和图表输出由以下再现。使用这种方法的一个改进是我们不需要创建 fit
.
的中间步骤
library(tidyverse)
library(broom)
library(gamlss)
library(datasets)
model.frame.gamlss <- function(formula, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ...)
{
object <- formula
dots <- list(...)
what <- if (!is.null(parameter)) {
match.arg(parameter, choices = c("mu", "sigma", "nu", "tau"))
} else match.arg(what)
Call <- object$call
parform <- formula(object, what)
data <- if (!is.null(Call$data)) {
# problem here, as Call$data is .
# eval(Call$data)
# instead, this would work:
eval(Call$data, environment(formula$mu.terms))
# (there is no formula$terms, just mu.terms and sigma.terms)
} else {
environment(formula$terms)
}
Terms <- terms(parform)
mf <- model.frame(
Terms,
data,
xlev = object[[paste(what, "xlevels", sep = ".")]]
)
mf
}
aug_func <- function(df){
augment(gamlss(mpg ~ hp + wt + disp, data=df))
}
mtcars %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual"))) %>%
group_by(am) %>%
do(aug=aug_func(df=.)) %>%
unnest(aug) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon gamlss", y = "Predicted Value gamlss") +
theme_bw()
上下文:tidyverse
和 dplyr
environment/work-flow。
对于如何解决我在尝试处理回归结果集合时遇到的以下问题,我将不胜感激。
这个最小的可重现性显示了问题
mtcars %>%
gamlss(mpg ~ hp + wt + disp, data = .) %>%
model.frame()
下面的示例说明了更广泛的上下文并按预期工作(生成所示图像)。如果我所做的只是将 ~lm(...)
更改为 ~glm(...)
或 ~gam(...)
:
library(tidyverse)
library(broom)
library(gamlss)
library(datasets)
mtcars %>%
nest(-am) %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual")),
fit = map(data, ~lm(mpg ~ hp + wt + disp, data = .)),
results = map(fit, augment)) %>%
unnest(results) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon", y = "Predicted Value") +
theme_bw()
但是,如果我尝试使用~gamlss(...)
如下:
mtcars %>%
nest(-am) %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual")),
fit = map(data, ~gamlss(mpg ~ hp + wt + disp, data = .)),
results = map(fit, augment)) %>%
unnest(results) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon", y = "Predicted Value") +
theme_bw()
我观察到以下错误:
GAMLSS-RS iteration 1: Global Deviance = 58.7658
GAMLSS-RS iteration 2: Global Deviance = 58.7658
GAMLSS-RS iteration 1: Global Deviance = 76.2281
GAMLSS-RS iteration 2: Global Deviance = 76.2281
******************************************************************
Family: c("NO", "Normal")
Call: gamlss(formula = mpg ~ hp + wt + disp, data = .)
Fitting method: RS()
------------------------------------------------------------------
Mu link function: identity
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.811721 3.387118 12.935 4.05e-07 ***
hp 0.001768 0.021357 0.083 0.93584
wt -6.982534 1.998827 -3.493 0.00679 **
disp -0.019569 0.021460 -0.912 0.38559
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------------------------------
Sigma link function: log
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8413 0.1961 4.29 0.00105 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------------------------------
No. of observations in the fit: 13
Degrees of Freedom for the fit: 5
Residual Deg. of Freedom: 8
at cycle: 2
Global Deviance: 58.76579
AIC: 68.76579
SBC: 71.59054
******************************************************************
Error in mutate_impl(.data, dots) :
Evaluation error: object '.' not found.
In addition: Warning messages:
1: Deprecated: please use `purrr::possibly()` instead
2: Deprecated: please use `purrr::possibly()` instead
3: Deprecated: please use `purrr::possibly()` instead
4: Deprecated: please use `purrr::possibly()` instead
5: Deprecated: please use `purrr::possibly()` instead
6: In summary.gamlss(model) :
summary: vcov has failed, option qr is used instead
15: stop(list(message = "Evaluation error: object '.' not found.",
call = mutate_impl(.data, dots), cppstack = NULL))
14: .Call(`_dplyr_mutate_impl`, df, dots)
13: mutate_impl(.data, dots)
12: mutate.tbl_df(tbl_df(.data), ...)
11: mutate(tbl_df(.data), ...)
10: as.data.frame(mutate(tbl_df(.data), ...))
9: mutate.data.frame(., am = factor(am, levels = c(0, 1), labels = c("automatic",
"manual")), fit = map(data, ~gamlss(mpg ~ hp + wt + disp,
data = .)), results = map(fit, augment))
8: mutate(., am = factor(am, levels = c(0, 1), labels = c("automatic",
"manual")), fit = map(data, ~gamlss(mpg ~ hp + wt + disp,
data = .)), results = map(fit, augment))
7: function_list[[i]](value)
6: freduce(value, `_function_list`)
5: `_fseq`(`_lhs`)
4: eval(quote(`_fseq`(`_lhs`)), env, env)
3: eval(quote(`_fseq`(`_lhs`)), env, env)
2: withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
1: mtcars %>% nest(-am) %>% mutate(am = factor(am, levels = c(0,
1), labels = c("automatic", "manual")), fit = map(data, ~gamlss(mpg ~
hp + wt + disp, data = .)), results = map(fit, augment)) %>%
unnest(results) %>% ggplot(aes(x = mpg, y = .fitted))
对于需要更改哪些内容才能使此示例按预期工作,是否有人有任何建议?
对于问题所在的任何见解,我将不胜感激。为什么它不起作用。如何诊断此类问题。
model.frame.gamlss
没有正确考虑data
参数的原始环境。
在下面的代码中查看我的评论:
model.frame.gamlss <- function(formula, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ...)
{
object <- formula
dots <- list(...)
what <- if (!is.null(parameter)) {
match.arg(parameter, choices = c("mu", "sigma", "nu", "tau"))
} else match.arg(what)
Call <- object$call
parform <- formula(object, what)
data <- if (!is.null(Call$data)) {
# problem here, as Call$data is .
eval(Call$data)
# instead, this would work:
# eval(Call$data, environment(formula$mu.terms))
# (there is no formula$terms, just mu.terms and sigma.terms)
} else {
environment(formula$terms)
}
Terms <- terms(parform)
mf <- model.frame(
Terms,
data,
xlev = object[[paste(what, "xlevels", sep = ".")]]
)
mf
}
我想应该向 gamlss
维护者提交问题,除非这已经完成。
基于 RolnadASc 的部分答案...
原始问题的中间数据集和图表输出由以下再现。使用这种方法的一个改进是我们不需要创建 fit
.
library(tidyverse)
library(broom)
library(gamlss)
library(datasets)
model.frame.gamlss <- function(formula, what = c("mu", "sigma", "nu", "tau"), parameter = NULL, ...)
{
object <- formula
dots <- list(...)
what <- if (!is.null(parameter)) {
match.arg(parameter, choices = c("mu", "sigma", "nu", "tau"))
} else match.arg(what)
Call <- object$call
parform <- formula(object, what)
data <- if (!is.null(Call$data)) {
# problem here, as Call$data is .
# eval(Call$data)
# instead, this would work:
eval(Call$data, environment(formula$mu.terms))
# (there is no formula$terms, just mu.terms and sigma.terms)
} else {
environment(formula$terms)
}
Terms <- terms(parform)
mf <- model.frame(
Terms,
data,
xlev = object[[paste(what, "xlevels", sep = ".")]]
)
mf
}
aug_func <- function(df){
augment(gamlss(mpg ~ hp + wt + disp, data=df))
}
mtcars %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual"))) %>%
group_by(am) %>%
do(aug=aug_func(df=.)) %>%
unnest(aug) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon gamlss", y = "Predicted Value gamlss") +
theme_bw()