Newton Raphson 迭代 - 无法迭代

Newton Raphson iteration - unable to iterate

我不确定这个问题是否与这里或其他地方的主题相关(或者根本不与主题相关)。 我继承了执行 Newton Raphson 插值的 Fortran 90 代码,其中温度的对数根据压力的对数进行插值。

插值类型为

t =  a ln(p) + b 

其中a、b定义为

a = ln(tup/tdwn)/(alogpu - alogpd)

 b = ln T - a * ln P

这是测试程序。它仅针对单次迭代显示。但实际程序 运行s 超过三个 FOR 循环,遍历 k、j 和 i。实际上 pthta 是一个 3D array(k,j,i) 而 thta 是一个 1D array (k)

 program test

 implicit none
 integer,parameter :: dp = SELECTED_REAL_KIND(12,307)
 real(kind=dp)  kappa,interc,pres,dltdlp,tup,tdwn
 real(kind=dp)  pthta,alogp,alogpd,alogpu,thta,f,dfdp,p1
 real(kind=dp) t1,resid,potdwn,potup,pdwn,pup,epsln,thta1
 integer i,j,kout,n,maxit,nmax,resmax


 kappa = 2./7.
 epsln = 1. 
 potdwn = 259.39996337890625
 potup =  268.41687198359159
 pdwn = 100000.00000000000
 pup =  92500.000000000000
 alogpu =  11.43496392350051
 alogpd =  11.512925464970229
 thta = 260.00000000000000
 alogp = 11.512925464970229
 ! known temperature at lower level
 tdwn = potdwn * (pdwn/100000.)** kappa
 ! known temperature at upper level 
 tup = potup *(pup/100000.)** kappa
 ! linear change of temperature wrt lnP between different levels
 dltdlp = dlog(tup/tdwn)/(alogpu-alogpd)
 ! ln(T) value(intercept) where Pressure is 1 Pa and assume a linear
 ! relationship between P and T
 interc = dlog(tup) - dltdlp*alogpu
 ! Initial guess value for pressure

 pthta = exp((dlog(thta)-interc-kappa*alogp)/(dltdlp-kappa))
 n=0

 1900 continue
 !First guess of temperature at intermediate level
 t1 = exp(dltdlp * dlog(pthta)+interc)
 !Residual error when calculating Newton Raphson iteration(Pascal)
 resid = pthta - 100000.*(t1/thta)**(1./kappa)
 print *, dltdlp,interc,t1,resid,pthta

 if (abs(resid) .gt. epsln) then
   n=n+1
 if (n .le. nmax) then
    ! First guess of potential temperature given T1 and
    ! pressure level guess
    thta1 = t1 * (100000./pthta)**kappa
    f= thta - thta1
    dfdp = (kappa-dltdlp)*(100000./pthta)**kappa*exp(interc + (dltdlp -1.)*dlog(pthta))
    p1 = pthta - f/dfdp
    if (p1 .le. pdwn) then
       if (p1 .ge. pup) then
          pthta = p1
          goto 1900
       else
          n = nmax
       end if
    end if
 else
    if (resid .gt. resmax) resmax = resid
    maxit = maxit+1
    goto 2100
 end if
end if

2100 continue

end program test

当你运行这个程序使用数据文件中的真实数据时,resid 的值如下

2.7648638933897018E-010 

而且整个执行过程差别不大。大多数值都在

范围内
1E-10 and 1E-12

因此给定这些值,以下 IF 条件

IF (abs(resid) .gt. epsln)

永远不会被调用,Newton Raphson 迭代也永远不会被执行。所以我研究了两种方法来让它发挥作用。一是去掉这两步中的exponential call

pthta = exp((dlog(thta)-interc-kappa*alogp)/(dltdlp-kappa))

t1 = exp(dltdlp * dlog(pthta)+interc)

即将所有内容保持在对数 space 中,并在 Newton Raphson 迭代完成后取指数。那部分收敛没有问题。

我尝试完成这项工作的另一种方法是 t运行cate

t1 = exp(dltdlp * dlog(pthta)+interc)

当我运行将其转换为整数时,resid 的值从 1E-10 到 813。我不明白 t运行cating 该函数调用如何导致如此大的值变化。 T运行cating 该结果确实导致成功完成。 所以我不确定哪种方法是进一步进行的更好方法。

我如何确定哪种方法更好?

从研究的角度来看,我认为您的第一个解决方案可能是更合适的方法。在物理模拟中,应该始终使用 by-definition 始终为正的属性的对数。在上面的代码中,这些将是温度和压力。严格 positive-definite 物理变量通常会导致计算上溢和下溢,无论您使用 Fortran 还是任何其他编程语言,或任何可能的变量类型。如果某事可能发生,它就会发生。

其他物理量也是如此,例如,能量(Gamma-Ray-Burst 的典型能量是~10^54 尔格),任意维度物体的体积(100 的体积)半径为 10 米的维球体是 ~ 10^100),甚至是概率(许多统计问题中的似然函数可以取 ~10^{-1000} 或更小的值)。使用 log-transform 个 positive-definite 变量将使您的代码能够处理大至 ~10^10^307 的数字(对于双精度变量)。

还有一些关于代码中使用的 Fortran 语法的注意事项:

  • 您的代码中使用了变量 RESMAX,但未进行初始化。

  • 给变量赋值时,一定要适当地指定字面常量的种类,否则可能会影响程序结果。例如,这是在调试模式下使用英特尔 Fortran 编译器 2018 编译的原始代码的输出:

      -0.152581477302743        7.31503025786548        259.608693509165
      -3.152934473473579E-002   99474.1999921620
    

    这里是相同代码的输出,但所有文字常量都以种类参数 _dp 为后缀(请参阅下面代码的修订版本):

      -0.152580456940175        7.31501855886952        259.608692604963
      -8.731149137020111E-011   99474.2302854451
    

    此答案中修改后的代码输出与上述问题中原始代码的输出略有不同。

  • 不需要用.gt..ge..le..lt.、……来比较。据我所知,这些是遗留的 FORTRAN 语法。使用更具吸引力的符号( <><=>=== )进行比较。

  • 没有必要在 Fortran 程序中使用 GOTO 语句。这又是遗留的 FORTRAN。通常,简单优雅的 do-loops 和 if-blocks 可以替换 GOTO 语句,就像下面修改后的代码一样。

  • 在 Fortran 中不再需要使用 kind-specific 内部函数(例如 dexpdlog、...双精度)。在当前的 Fortran 标准中,几乎所有(也许是所有)Fortran 内部函数都有通用名称(explog、...)。

以下是对本题程序的修改,解决了上述所有过时的语法,以及处理极大或极小positive-definite变量的问题(我可能走得太远了在 log-transforming 一些永远不会导致溢出或下溢的变量中,但我在这里的目的只是展示 log-transformation 背后的逻辑 positive-definite 变量以及如何处理它们的算法而不可能导致 overflow/underflow/error_in_results).

program test

implicit none
integer,parameter :: dp = SELECTED_REAL_KIND(12,307)
real(kind=dp)  kappa,interc,pres,dltdlp,tup,tdwn
real(kind=dp)  pthta,alogp,alogpd,alogpu,thta,f,dfdp,p1
real(kind=dp) t1,resid,potdwn,potup,pdwn,pup,epsln,thta1
integer i,j,kout,n,maxit,nmax,resmax

real(kind=dp) :: log_resmax, log_pthta, log_t1, log_dummy, log_residAbsolute, sign_of_f
real(kind=dp) :: log_epsln, log_pdwn, log_pup, log_thta, log_thta1, log_p1, log_dfdp, log_f
logical :: residIsPositive, resmaxIsPositive, residIsBigger

log_resmax = log(log_resmax)
resmaxIsPositive = .true.

kappa = 2._dp/7._dp
epsln = 1._dp 
potdwn = 259.39996337890625_dp
potup =  268.41687198359159_dp
pdwn = 100000.00000000000_dp
pup =  92500.000000000000_dp
alogpu =  11.43496392350051_dp
alogpd =  11.512925464970229_dp
thta = 260.00000000000000_dp
alogp = 11.512925464970229_dp

log_epsln = log(epsln) 
log_pup =  log(pup)
log_pdwn = log(pdwn)
log_thta = log(thta)

! known temperature at lower level
tdwn = potdwn * (pdwn/1.e5_dp)**kappa
! known temperature at upper level 
tup = potup *(pup/1.e5_dp)** kappa
! linear change of temperature wrt lnP between different levels
dltdlp = log(tup/tdwn)/(alogpu-alogpd)
! ln(T) value(intercept) where Pressure is 1 Pa and assume a linear
! relationship between P and T
interc = log(tup) - dltdlp*alogpu
! Initial guess value for pressure

!pthta = exp( (log(thta)-interc-kappa*alogp) / (dltdlp-kappa) )
log_pthta = ( log_thta - interc - kappa*alogp ) / ( dltdlp - kappa )

n=0

MyDoLoop: do

    !First guess of temperature at intermediate level
    !t1 = exp(dltdlp * log(pthta)+interc)
    log_t1 = dltdlp * log_pthta + interc

    !Residual error when calculating Newton Raphson iteration(Pascal)
    !resid = pthta - 1.e5_dp*(t1/thta)**(1._dp/kappa)
    log_dummy = log(1.e5_dp) + ( log_t1 - log_thta ) / kappa
    if (log_pthta>=log_dummy) then
      residIsPositive = .true.
      log_residAbsolute = log_pthta + log( 1._dp - exp(log_dummy-log_pthta) )
    else
      residIsPositive = .false.
      log_residAbsolute = log_dummy + log( 1._dp - exp(log_pthta-log_dummy) )
    end if

    print *, "log-transformed values:"
    print *, dltdlp,interc,log_t1,log_residAbsolute,log_pthta
    print *, "non-log-transformed values:"
    if (residIsPositive) print *, dltdlp,interc,exp(log_t1),exp(log_residAbsolute),exp(log_pthta)
    if (.not.residIsPositive) print *, dltdlp,interc,exp(log_t1),-exp(log_residAbsolute),exp(log_pthta)

    !if (abs(resid) > epsln) then
    if ( log_residAbsolute > log_epsln ) then
        n=n+1
        if (n <= nmax) then
            ! First guess of potential temperature given T1 and
            ! pressure level guess
            !thta1 = t1 * (1.e5_dp/pthta)**kappa
            log_thta1 = log_t1 + ( log(1.e5_dp)-log_pthta ) * kappa
            !f = thta - thta1
            if ( log_thta>=thta1 ) then
              log_f = log_thta + log( 1._dp - exp( log_thta1 - log_thta ) )
              sign_of_f = 1._dp
            else
              log_f = log_thta + log( 1._dp - exp( log_thta - log_thta1 ) )
              sign_of_f = 1._dp
            end if
            !dfdp = (kappa-dltdlp)*(1.e5_dp/pthta)**kappa*exp(interc + (dltdlp -1._dp)*log(pthta))
            ! assuming kappa-dltdlp>0 is TRUE always:
            log_dfdp = log(kappa-dltdlp) + kappa*(log(1.e5_dp)-log_pthta) + interc + (dltdlp -1._dp)*log_pthta
            !p1 = pthta - f/dfdp
            ! p1 should be, by definition, positive. Therefore:
            log_dummy = log_f - log_dfdp
            if (log_pthta>=log_dummy) then
                log_p1 = log_pthta + log( 1._dp - sign_of_f*exp(log_dummy-log_pthta) )
            else
                log_p1 = log_dummy + log( 1._dp - sign_of_f*exp(log_pthta-log_dummy) )
            end if
            !if (p1 <= pdwn) then
            if (log_p1 <= log_pdwn) then
               !if (p1 >= pup) then
               if (log_p1 >= log_pup) then
                  log_pthta = log_p1
                  cycle MyDoLoop
               else
                  n = nmax
               end if
            end if
        else
            !if (resid > resmax) resmax = resid
            residIsBigger = ( residIsPositive .and. resmaxIsPositive .and. log_residAbsolute>log_resmax ) .or. &
                            ( .not.residIsPositive .and. .not.resmaxIsPositive .and. log_residAbsolute<log_resmax ) .or. &
                            ( residIsPositive .and. .not. resmaxIsPositive )
            if ( residIsBigger ) then
                log_resmax = log_residAbsolute
                resmaxIsPositive = residIsPositive
            end if
            maxit = maxit+1
        end if
    end if

    exit MyDoLoop

end do MyDoLoop

end program test

下面是这个程序的示例输出,与原始代码的输出非常吻合:

log-transformed values:
 -0.152580456940175        7.31501855886952        5.55917546888014
  -22.4565579499410        11.5076538974964
 non-log-transformed values:
 -0.152580456940175        7.31501855886952        259.608692604963
 -1.767017293116268E-010   99474.2302854451

为了比较,这里是原始代码的输出:

 -0.152580456940175        7.31501855886952        259.608692604963
 -8.731149137020111E-011   99474.2302854451