我如何拥有多个映射器和缩减器?
How can i have multiple mappers and reducers?
我有这段代码,我在其中设置了一个映射器和一个 reducer.I 想要再包含一个映射器和一个缩减器来完成进一步的工作。
问题是我必须将第一个 map reduce 作业的输出文件作为下一个 map reduce 的输入 job.Is 可以这样做吗?如果是,那我该怎么做?
public int run(String[] args) throws Exception
{
JobConf conf = new JobConf(getConf(),DecisionTreec45.class);
conf.setJobName("c4.5");
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MyMapper.class);
conf.setReducerClass(MyReducer.class);
//set your input file path below
FileInputFormat.setInputPaths(conf, "/home/hduser/Id3_hds/playtennis.txt");
FileOutputFormat.setOutputPath(conf, new Path("/home/hduser/Id3_hds/1/output"+current_index));
JobClient.runJob(conf);
return 0;
}
是的,可以做到这一点。您可以查看以下教程以了解链接是如何发生的。 http://gandhigeet.blogspot.com/2012/12/as-discussed-in-previous-post-hadoop.html
确保删除 HDFS 中的中间输出数据,这些数据将由每个 MR 阶段使用 fs.delete(intermediateoutputPath);
创建
看看它是如何工作的。
你需要有两份工作。作业 2 依赖于作业 1。
public class ChainJobs extends Configured implements Tool {
private static final String OUTPUT_PATH = "intermediate_output";
@Override
public int run(String[] args) throws Exception {
/*
* Job 1
*/
Configuration conf = getConf();
FileSystem fs = FileSystem.get(conf);
Job job = new Job(conf, "Job1");
job.setJarByClass(ChainJobs.class);
job.setMapperClass(MyMapper1.class);
job.setReducerClass(MyReducer1.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.addInputPath(job, new Path(args[0]));
TextOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));
job.waitForCompletion(true); /*this goes to next command after this job is completed. your second job is dependent on your first job.*/
/*
* Job 2
*/
Configuration conf2 = getConf();
Job job2 = new Job(conf2, "Job 2");
job2.setJarByClass(ChainJobs.class);
job2.setMapperClass(MyMapper2.class);
job2.setReducerClass(MyReducer2.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(Text.class);
job2.setInputFormatClass(TextInputFormat.class);
job2.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.addInputPath(job2, new Path(OUTPUT_PATH));
TextOutputFormat.setOutputPath(job2, new Path(args[1]));
return job2.waitForCompletion(true) ? 0 : 1;
}
/**
* Method Name: main Return type: none Purpose:Read the arguments from
* command line and run the Job till completion
*
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
if (args.length != 2) {
System.err.println("Enter valid number of arguments <Inputdirectory> <Outputlocation>");
System.exit(0);
}
ToolRunner.run(new Configuration(), new ChainJobs(), args);
}
}
我有这段代码,我在其中设置了一个映射器和一个 reducer.I 想要再包含一个映射器和一个缩减器来完成进一步的工作。 问题是我必须将第一个 map reduce 作业的输出文件作为下一个 map reduce 的输入 job.Is 可以这样做吗?如果是,那我该怎么做?
public int run(String[] args) throws Exception
{
JobConf conf = new JobConf(getConf(),DecisionTreec45.class);
conf.setJobName("c4.5");
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MyMapper.class);
conf.setReducerClass(MyReducer.class);
//set your input file path below
FileInputFormat.setInputPaths(conf, "/home/hduser/Id3_hds/playtennis.txt");
FileOutputFormat.setOutputPath(conf, new Path("/home/hduser/Id3_hds/1/output"+current_index));
JobClient.runJob(conf);
return 0;
}
是的,可以做到这一点。您可以查看以下教程以了解链接是如何发生的。 http://gandhigeet.blogspot.com/2012/12/as-discussed-in-previous-post-hadoop.html
确保删除 HDFS 中的中间输出数据,这些数据将由每个 MR 阶段使用 fs.delete(intermediateoutputPath);
看看它是如何工作的。
你需要有两份工作。作业 2 依赖于作业 1。
public class ChainJobs extends Configured implements Tool {
private static final String OUTPUT_PATH = "intermediate_output";
@Override
public int run(String[] args) throws Exception {
/*
* Job 1
*/
Configuration conf = getConf();
FileSystem fs = FileSystem.get(conf);
Job job = new Job(conf, "Job1");
job.setJarByClass(ChainJobs.class);
job.setMapperClass(MyMapper1.class);
job.setReducerClass(MyReducer1.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.addInputPath(job, new Path(args[0]));
TextOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));
job.waitForCompletion(true); /*this goes to next command after this job is completed. your second job is dependent on your first job.*/
/*
* Job 2
*/
Configuration conf2 = getConf();
Job job2 = new Job(conf2, "Job 2");
job2.setJarByClass(ChainJobs.class);
job2.setMapperClass(MyMapper2.class);
job2.setReducerClass(MyReducer2.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(Text.class);
job2.setInputFormatClass(TextInputFormat.class);
job2.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.addInputPath(job2, new Path(OUTPUT_PATH));
TextOutputFormat.setOutputPath(job2, new Path(args[1]));
return job2.waitForCompletion(true) ? 0 : 1;
}
/**
* Method Name: main Return type: none Purpose:Read the arguments from
* command line and run the Job till completion
*
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
if (args.length != 2) {
System.err.println("Enter valid number of arguments <Inputdirectory> <Outputlocation>");
System.exit(0);
}
ToolRunner.run(new Configuration(), new ChainJobs(), args);
}
}