使用 C++ 求解二阶 ODE 的 Runge-Kutta 四阶
Runge-Kutta 4th order to solve 2nd order ODE using C++
我尝试编写代码来求解二阶 ODE,但不知何故它没有按我的预期工作。
等式是 2y" + 5y' +3y = 0 ,y(0) = 3 和 y'(0) = -4
最终答案将是 y(x) = 3-4x << 编辑这是错误的
因此 y(1) = -1 且 y'(1) = -4
但程序输出是 y(1) = 0.81414 y'(1) = -1.03727 << 正确
请帮忙!
谢谢!
#include "stdafx.h"
#include <iostream>
#include <cmath>
#include <math.h>
double ddx(double x,double y,double z)
{
double dx = (-5*z-3*y)/2;
return dx;
}
double test2ndorder(double x0, double y0, double z0, double xt, double h)
{
int n = (int)((xt - x0) / h);
double k1, k2, k3, k4;
double l1, l2, l3, l4;
double x = x0;
double y = y0;
double z = z0;
for (int i = 1; i <= n; i++)
{
k1 = h * z;
l1 = h * ddx(x, y, z);
k2 = h * (z + 0.5*l1);
l2 = h * ddx(x + 0.5*h, y + 0.5*k1, z + 0.5*l1);
k3 = h * (z + 0.5*l2);
l3 = h * ddx(x + 0.5*h, y + 0.5*k2, z + 0.5*l2);
k4 = h * (z + l3);
l4 = h * ddx(x + h, y + k3, z + l3);
y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4);
z = z + (1.0 / 6.0)*(l1 + 2 * l2 + 2 * l3 + l4);
x = x + h;
std::cout << y << " ";
std::cout << z << "\n";
}
return y;
}
int main()
{
double x0, y0, z0, x, y, z,h;
x0 = 0;
x = 1;
y0 = 3;
z0 = -4;
h =0.01;
y = test2ndorder(x0, y0, z0, x, h);
std::cout << y;
}
在 test2ndorder
的 for 循环中,您使用常量 x0
、y0
和 z0
值,因此每次迭代中计算的值不会改变。您还为 y
计算了一个新值并且从不使用它。
看来您应该改用 x
、y
和 z
。
2y" + 5y' +3y = 0 ,y(0) = 3 and y'(0) = -4
的特征根是
的解
(2r)^2 + 5*(2r) + 6 = 0 <==> r = -1 or r = -1.5
所以解决方案是
y(x) = A*exp(-x)+B*exp(-1.5*x)
3 = y(0) = A + B
-4 = y'(0) = -A - 1.5*B
所以 B = 2
和 A = 1
给出
y(1) = 0.814139761468302
y'(1) = -1.03726992161673
这就是你所得到的。
我尝试编写代码来求解二阶 ODE,但不知何故它没有按我的预期工作。
等式是 2y" + 5y' +3y = 0 ,y(0) = 3 和 y'(0) = -4
最终答案将是 y(x) = 3-4x << 编辑这是错误的
因此 y(1) = -1 且 y'(1) = -4
但程序输出是 y(1) = 0.81414 y'(1) = -1.03727 << 正确
请帮忙!
谢谢!
#include "stdafx.h"
#include <iostream>
#include <cmath>
#include <math.h>
double ddx(double x,double y,double z)
{
double dx = (-5*z-3*y)/2;
return dx;
}
double test2ndorder(double x0, double y0, double z0, double xt, double h)
{
int n = (int)((xt - x0) / h);
double k1, k2, k3, k4;
double l1, l2, l3, l4;
double x = x0;
double y = y0;
double z = z0;
for (int i = 1; i <= n; i++)
{
k1 = h * z;
l1 = h * ddx(x, y, z);
k2 = h * (z + 0.5*l1);
l2 = h * ddx(x + 0.5*h, y + 0.5*k1, z + 0.5*l1);
k3 = h * (z + 0.5*l2);
l3 = h * ddx(x + 0.5*h, y + 0.5*k2, z + 0.5*l2);
k4 = h * (z + l3);
l4 = h * ddx(x + h, y + k3, z + l3);
y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4);
z = z + (1.0 / 6.0)*(l1 + 2 * l2 + 2 * l3 + l4);
x = x + h;
std::cout << y << " ";
std::cout << z << "\n";
}
return y;
}
int main()
{
double x0, y0, z0, x, y, z,h;
x0 = 0;
x = 1;
y0 = 3;
z0 = -4;
h =0.01;
y = test2ndorder(x0, y0, z0, x, h);
std::cout << y;
}
在 test2ndorder
的 for 循环中,您使用常量 x0
、y0
和 z0
值,因此每次迭代中计算的值不会改变。您还为 y
计算了一个新值并且从不使用它。
看来您应该改用 x
、y
和 z
。
2y" + 5y' +3y = 0 ,y(0) = 3 and y'(0) = -4
的特征根是
的解(2r)^2 + 5*(2r) + 6 = 0 <==> r = -1 or r = -1.5
所以解决方案是
y(x) = A*exp(-x)+B*exp(-1.5*x)
3 = y(0) = A + B
-4 = y'(0) = -A - 1.5*B
所以 B = 2
和 A = 1
给出
y(1) = 0.814139761468302
y'(1) = -1.03726992161673
这就是你所得到的。