使用 ns 样条拟合进行预测(glmer with ns 样条)
Prediction using a ns spline fit (glmer with ns spline)
我正在使用 glmer()
函数来确定入侵蚯蚓物种的权重是否对明尼苏达州的 4 种不同树种有显着影响。我试图在调整其他变量后预测某个蚯蚓重量的事件概率(因为它是逻辑回归/树种是否会存活)。我们也在考虑用优势比来比较不同树种之间是否存在差异。所以想用predict()
函数指定一定的权重值,预测事件发生的概率
这里是summary(data)
。我们特别关注 meanwormwt
(蠕虫的平均重量)。我最终想要的是在给定某个平均蠕虫重量值的情况下预测事件发生的概率。例如,"what's the probability of the event when the mean worm weight is 0.3246?"
Exclose DensF Species Park Parkclust ParkPlot
No :2015 Min. : 8.00 ACSA:1011 BRSP:672 BRSP1 : 168 BRSP11 : 96
Yes:2016 1st Qu.:28.00 QUMA:1004 CSP :672 BRSP2 : 168 BRSP2 : 96
Median :48.00 RHCA:1009 GLSP:672 BRSP3 : 168 BRSP6 : 96
Mean :37.52 TIAM:1007 GRF :672 BRSP4 : 168 BRSP8 : 96
3rd Qu.:48.00 NLP :671 CAM1 : 168 CSP10 : 96
Max. :48.00 SSP :672 CAM2 : 168 CSP2 : 96
(Other):3023 (Other):3455
Unique x y PlantId Cluster
BRSP11C: 48 Min. :1.000 Min. :1.000 NLP8C.1.2 : 2 Min. :1.0
BRSP11E: 48 1st Qu.:2.000 1st Qu.:2.000 SSP10E.2.5 : 2 1st Qu.:2.0
BRSP2C : 48 Median :3.000 Median :4.000 BRSP10C.1.1: 1 Median :3.0
BRSP2E : 48 Mean :2.976 Mean :4.142 BRSP10C.1.2: 1 Mean :2.5
BRSP6C : 48 3rd Qu.:4.000 3rd Qu.:6.000 BRSP10C.1.3: 1 3rd Qu.:3.5
BRSP6E : 48 Max. :6.000 Max. :8.000 BRSP10C.1.4: 1 Max. :4.0
(Other):3743 (Other) :4023
Plot LowLevXBlks DeerFPP13park DeerFPP15park DeerAvgFrac
Min. : 1.000 SSP10E:2 : 9 Min. : 1.20 Min. :0.9167 Min. :0.1654
1st Qu.: 4.000 BRSP11C:1: 8 1st Qu.: 1.60 1st Qu.:1.9167 1st Qu.:0.4878
Median : 7.000 BRSP11C:2: 8 Median : 1.90 Median :2.4167 Median :0.5365
Mean : 6.392 BRSP11C:3: 8 Mean : 8.13 Mean :2.3194 Mean :0.5420
3rd Qu.: 9.500 BRSP11C:4: 8 3rd Qu.:12.80 3rd Qu.:3.0000 3rd Qu.:0.6673
Max. :12.000 BRSP11C:5: 8 Max. :20.90 Max. :3.3333 Max. :0.8500
(Other) :3982
DeerFPP13plot DeerFPP15plot Lt15CnpyOpen Lt13CnpyOpen pHH2013
Min. : 0.00 Min. :0.000 Min. : 4.04 Min. : 5.01 Min. :5.48
1st Qu.: 0.00 1st Qu.:1.000 1st Qu.: 9.81 1st Qu.: 8.79 1st Qu.:6.46
Median : 1.00 Median :1.500 Median :13.92 Median :13.73 Median :6.89
Mean : 2.29 Mean :1.663 Mean :15.44 Mean :18.27 Mean :6.93
3rd Qu.: 3.00 3rd Qu.:2.000 3rd Qu.:18.51 3rd Qu.:23.69 3rd Qu.:7.48
Max. :11.00 Max. :7.000 Max. :58.81 Max. :57.38 Max. :8.17
NA's :96
worm16ct worm16wt meanwormct meanwormwt PlotMoist
Min. : 0.0 Min. :0.0000 Min. : 0.00 Min. :0.0000 Min. :0.1206
1st Qu.:10.0 1st Qu.:0.2729 1st Qu.:13.00 1st Qu.:0.3246 1st Qu.:0.1622
Median :22.0 Median :0.6463 Median :23.33 Median :0.6292 Median :0.1873
Mean :26.5 Mean :1.1226 Mean :27.92 Mean :0.9185 Mean :0.1948
3rd Qu.:37.0 3rd Qu.:1.2940 3rd Qu.:40.00 3rd Qu.:1.0901 3rd Qu.:0.2239
Max. :94.0 Max. :7.5096 Max. :85.33 Max. :3.6966 Max. :0.2927
NA's :96 NA's :96
ClustMoist AvgJJA AvgDJF TotalBA FireObsF
Min. :0.1366 Min. :18.90 Min. :-9.300 Min. :0.4269 FireObs : 96
1st Qu.:0.1710 1st Qu.:20.90 1st Qu.:-7.200 1st Qu.:1.1455 NotFireObs:3935
Median :0.1883 Median :21.30 Median :-6.600 Median :1.4635
Mean :0.1966 Mean :21.28 Mean :-6.688 Mean :1.5469
3rd Qu.:0.2190 3rd Qu.:21.80 3rd Qu.:-6.300 3rd Qu.:1.9987
Max. :0.2735 Max. :24.50 Max. :-4.700 Max. :2.7619
Alive12Sum Alive12SumF Alive16JuneF Alive16June
Min. :0.0000 Alive:3927 Alive:1556 Min. :0.0000
1st Qu.:1.0000 Dead : 104 Dead :2379 1st Qu.:0.0000
Median :1.0000 NA's : 96 Median :0.0000
Mean :0.9742 Mean :0.3954
3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000
NA's :96
我在平均蚯蚓重量上使用了 ns 样条曲线,并将其分为 3 个样条曲线。我需要为此使用什么代码?我尝试使用 predict.ns 或 predict.merMod 但我不知道如何使用,因为我们不只是在寻找总体平均预测值。我们想查看特定权重的预测值。我应该尝试什么命令?我应该怎么办?
这是我的 glmer 代码:
```{r}
nsglm<-glmer(Mort16JuneAPF ~ Exclose*Species + ns(meanwormwt, df=3, knots=c(0.3246,1.0901))*Species + (1 | Park) + (1 | Cluster:Park) + (1 | Plot:Cluster:Park) + (1|Exclose:ParkPlot) + (1 | x:Unique), data = mydata, family = binomial, control=glmerControl(optimizer="bobyqa", calc.derivs = FALSE))
summary(nsglm)
```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: Mort16JuneAPF ~ Exclose * Species + ns(meanwormwt, df = 3, knots = c(0.3246,
1.0901)) * Species + (1 | Park) + (1 | Cluster:Park) + (1 |
Plot:Cluster:Park) + (1 | Exclose:ParkPlot) + (1 | x:Unique)
Data: mydata
Control: glmerControl(optimizer = "bobyqa", calc.derivs = FALSE)
AIC BIC logLik deviance df.resid
4253.3 4410.2 -2101.7 4203.3 3910
Scaled residuals:
Min 1Q Median 3Q Max
-4.2758 -0.6492 0.2821 0.6346 4.0010
Random effects:
Groups Name Variance Std.Dev.
x:Unique (Intercept) 0.01345 0.1160
Exclose:ParkPlot (Intercept) 0.51799 0.7197
Plot:Cluster:Park (Intercept) 0.00000 0.0000
Cluster:Park (Intercept) 0.28753 0.5362
Park (Intercept) 0.03863 0.1965
Number of obs: 3935, groups:
x:Unique, 564; Exclose:ParkPlot, 142; Plot:Cluster:Park, 71; Cluster:Park, 24; Park, 6
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6957 0.4435 1.569 0.116746
ExcloseYes -2.7133 0.2090 -12.981 < 2e-16 ***
SpeciesQUMA 1.2551 0.3827 3.279 0.001041 **
SpeciesRHCA -0.6303 0.3407 -1.850 0.064331 .
SpeciesTIAM -0.5476 0.3500 -1.565 0.117687
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 1.2171 0.6496 1.874 0.060986 .
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 0.8967 0.9645 0.930 0.352534
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 -0.2013 0.7047 -0.286 0.775132
ExcloseYes:SpeciesQUMA 1.5177 0.2375 6.391 1.65e-10 ***
ExcloseYes:SpeciesRHCA 2.2524 0.2138 10.533 < 2e-16 ***
ExcloseYes:SpeciesTIAM 1.0164 0.2295 4.430 9.44e-06 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 -0.3065 0.6130 -0.500 0.617043
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 -1.0661 0.5614 -1.899 0.057555 .
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 0.6600 0.6074 1.087 0.277240
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 -2.1818 0.8225 -2.653 0.007984 **
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 -1.3299 0.7390 -1.800 0.071897 .
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 3.0146 0.7774 3.878 0.000105 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 -2.8120 0.5579 -5.041 4.64e-07 ***
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 -0.4749 0.5100 -0.931 0.351807
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 2.4477 0.5762 4.248 2.16e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
您需要将 predict()
与 newdata
参数一起使用。您需要为每个 fixed-effect 输入变量指定 some 值,例如
nd <- with(mydata,
expand.grid(Exclose=levels(Exclose), Species=levels(Species))
nd$meanwormwt <- 0.361
predict(nsglm, re.form=~0, newdata=nd)
re.form=~0
指定您要进行 population-level 预测(即,对于随机效应分组因子的 new/unknown 值)。
我正在使用 glmer()
函数来确定入侵蚯蚓物种的权重是否对明尼苏达州的 4 种不同树种有显着影响。我试图在调整其他变量后预测某个蚯蚓重量的事件概率(因为它是逻辑回归/树种是否会存活)。我们也在考虑用优势比来比较不同树种之间是否存在差异。所以想用predict()
函数指定一定的权重值,预测事件发生的概率
这里是summary(data)
。我们特别关注 meanwormwt
(蠕虫的平均重量)。我最终想要的是在给定某个平均蠕虫重量值的情况下预测事件发生的概率。例如,"what's the probability of the event when the mean worm weight is 0.3246?"
Exclose DensF Species Park Parkclust ParkPlot
No :2015 Min. : 8.00 ACSA:1011 BRSP:672 BRSP1 : 168 BRSP11 : 96
Yes:2016 1st Qu.:28.00 QUMA:1004 CSP :672 BRSP2 : 168 BRSP2 : 96
Median :48.00 RHCA:1009 GLSP:672 BRSP3 : 168 BRSP6 : 96
Mean :37.52 TIAM:1007 GRF :672 BRSP4 : 168 BRSP8 : 96
3rd Qu.:48.00 NLP :671 CAM1 : 168 CSP10 : 96
Max. :48.00 SSP :672 CAM2 : 168 CSP2 : 96
(Other):3023 (Other):3455
Unique x y PlantId Cluster
BRSP11C: 48 Min. :1.000 Min. :1.000 NLP8C.1.2 : 2 Min. :1.0
BRSP11E: 48 1st Qu.:2.000 1st Qu.:2.000 SSP10E.2.5 : 2 1st Qu.:2.0
BRSP2C : 48 Median :3.000 Median :4.000 BRSP10C.1.1: 1 Median :3.0
BRSP2E : 48 Mean :2.976 Mean :4.142 BRSP10C.1.2: 1 Mean :2.5
BRSP6C : 48 3rd Qu.:4.000 3rd Qu.:6.000 BRSP10C.1.3: 1 3rd Qu.:3.5
BRSP6E : 48 Max. :6.000 Max. :8.000 BRSP10C.1.4: 1 Max. :4.0
(Other):3743 (Other) :4023
Plot LowLevXBlks DeerFPP13park DeerFPP15park DeerAvgFrac
Min. : 1.000 SSP10E:2 : 9 Min. : 1.20 Min. :0.9167 Min. :0.1654
1st Qu.: 4.000 BRSP11C:1: 8 1st Qu.: 1.60 1st Qu.:1.9167 1st Qu.:0.4878
Median : 7.000 BRSP11C:2: 8 Median : 1.90 Median :2.4167 Median :0.5365
Mean : 6.392 BRSP11C:3: 8 Mean : 8.13 Mean :2.3194 Mean :0.5420
3rd Qu.: 9.500 BRSP11C:4: 8 3rd Qu.:12.80 3rd Qu.:3.0000 3rd Qu.:0.6673
Max. :12.000 BRSP11C:5: 8 Max. :20.90 Max. :3.3333 Max. :0.8500
(Other) :3982
DeerFPP13plot DeerFPP15plot Lt15CnpyOpen Lt13CnpyOpen pHH2013
Min. : 0.00 Min. :0.000 Min. : 4.04 Min. : 5.01 Min. :5.48
1st Qu.: 0.00 1st Qu.:1.000 1st Qu.: 9.81 1st Qu.: 8.79 1st Qu.:6.46
Median : 1.00 Median :1.500 Median :13.92 Median :13.73 Median :6.89
Mean : 2.29 Mean :1.663 Mean :15.44 Mean :18.27 Mean :6.93
3rd Qu.: 3.00 3rd Qu.:2.000 3rd Qu.:18.51 3rd Qu.:23.69 3rd Qu.:7.48
Max. :11.00 Max. :7.000 Max. :58.81 Max. :57.38 Max. :8.17
NA's :96
worm16ct worm16wt meanwormct meanwormwt PlotMoist
Min. : 0.0 Min. :0.0000 Min. : 0.00 Min. :0.0000 Min. :0.1206
1st Qu.:10.0 1st Qu.:0.2729 1st Qu.:13.00 1st Qu.:0.3246 1st Qu.:0.1622
Median :22.0 Median :0.6463 Median :23.33 Median :0.6292 Median :0.1873
Mean :26.5 Mean :1.1226 Mean :27.92 Mean :0.9185 Mean :0.1948
3rd Qu.:37.0 3rd Qu.:1.2940 3rd Qu.:40.00 3rd Qu.:1.0901 3rd Qu.:0.2239
Max. :94.0 Max. :7.5096 Max. :85.33 Max. :3.6966 Max. :0.2927
NA's :96 NA's :96
ClustMoist AvgJJA AvgDJF TotalBA FireObsF
Min. :0.1366 Min. :18.90 Min. :-9.300 Min. :0.4269 FireObs : 96
1st Qu.:0.1710 1st Qu.:20.90 1st Qu.:-7.200 1st Qu.:1.1455 NotFireObs:3935
Median :0.1883 Median :21.30 Median :-6.600 Median :1.4635
Mean :0.1966 Mean :21.28 Mean :-6.688 Mean :1.5469
3rd Qu.:0.2190 3rd Qu.:21.80 3rd Qu.:-6.300 3rd Qu.:1.9987
Max. :0.2735 Max. :24.50 Max. :-4.700 Max. :2.7619
Alive12Sum Alive12SumF Alive16JuneF Alive16June
Min. :0.0000 Alive:3927 Alive:1556 Min. :0.0000
1st Qu.:1.0000 Dead : 104 Dead :2379 1st Qu.:0.0000
Median :1.0000 NA's : 96 Median :0.0000
Mean :0.9742 Mean :0.3954
3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000
NA's :96
我在平均蚯蚓重量上使用了 ns 样条曲线,并将其分为 3 个样条曲线。我需要为此使用什么代码?我尝试使用 predict.ns 或 predict.merMod 但我不知道如何使用,因为我们不只是在寻找总体平均预测值。我们想查看特定权重的预测值。我应该尝试什么命令?我应该怎么办?
这是我的 glmer 代码:
```{r}
nsglm<-glmer(Mort16JuneAPF ~ Exclose*Species + ns(meanwormwt, df=3, knots=c(0.3246,1.0901))*Species + (1 | Park) + (1 | Cluster:Park) + (1 | Plot:Cluster:Park) + (1|Exclose:ParkPlot) + (1 | x:Unique), data = mydata, family = binomial, control=glmerControl(optimizer="bobyqa", calc.derivs = FALSE))
summary(nsglm)
```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: Mort16JuneAPF ~ Exclose * Species + ns(meanwormwt, df = 3, knots = c(0.3246,
1.0901)) * Species + (1 | Park) + (1 | Cluster:Park) + (1 |
Plot:Cluster:Park) + (1 | Exclose:ParkPlot) + (1 | x:Unique)
Data: mydata
Control: glmerControl(optimizer = "bobyqa", calc.derivs = FALSE)
AIC BIC logLik deviance df.resid
4253.3 4410.2 -2101.7 4203.3 3910
Scaled residuals:
Min 1Q Median 3Q Max
-4.2758 -0.6492 0.2821 0.6346 4.0010
Random effects:
Groups Name Variance Std.Dev.
x:Unique (Intercept) 0.01345 0.1160
Exclose:ParkPlot (Intercept) 0.51799 0.7197
Plot:Cluster:Park (Intercept) 0.00000 0.0000
Cluster:Park (Intercept) 0.28753 0.5362
Park (Intercept) 0.03863 0.1965
Number of obs: 3935, groups:
x:Unique, 564; Exclose:ParkPlot, 142; Plot:Cluster:Park, 71; Cluster:Park, 24; Park, 6
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6957 0.4435 1.569 0.116746
ExcloseYes -2.7133 0.2090 -12.981 < 2e-16 ***
SpeciesQUMA 1.2551 0.3827 3.279 0.001041 **
SpeciesRHCA -0.6303 0.3407 -1.850 0.064331 .
SpeciesTIAM -0.5476 0.3500 -1.565 0.117687
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 1.2171 0.6496 1.874 0.060986 .
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 0.8967 0.9645 0.930 0.352534
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 -0.2013 0.7047 -0.286 0.775132
ExcloseYes:SpeciesQUMA 1.5177 0.2375 6.391 1.65e-10 ***
ExcloseYes:SpeciesRHCA 2.2524 0.2138 10.533 < 2e-16 ***
ExcloseYes:SpeciesTIAM 1.0164 0.2295 4.430 9.44e-06 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 -0.3065 0.6130 -0.500 0.617043
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 -1.0661 0.5614 -1.899 0.057555 .
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1 0.6600 0.6074 1.087 0.277240
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 -2.1818 0.8225 -2.653 0.007984 **
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 -1.3299 0.7390 -1.800 0.071897 .
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2 3.0146 0.7774 3.878 0.000105 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 -2.8120 0.5579 -5.041 4.64e-07 ***
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 -0.4749 0.5100 -0.931 0.351807
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3 2.4477 0.5762 4.248 2.16e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
您需要将 predict()
与 newdata
参数一起使用。您需要为每个 fixed-effect 输入变量指定 some 值,例如
nd <- with(mydata,
expand.grid(Exclose=levels(Exclose), Species=levels(Species))
nd$meanwormwt <- 0.361
predict(nsglm, re.form=~0, newdata=nd)
re.form=~0
指定您要进行 population-level 预测(即,对于随机效应分组因子的 new/unknown 值)。