使用 ns 样条拟合进行预测(glmer with ns 样条)

Prediction using a ns spline fit (glmer with ns spline)

我正在使用 glmer() 函数来确定入侵蚯蚓物种的权重是否对明尼苏达州的 4 种不同树种有显着影响。我试图在调整其他变量后预测某个蚯蚓重量的事件概率(因为它是逻辑回归/树种是否会存活)。我们也在考虑用优势比来比较不同树种之间是否存在差异。所以想用predict()函数指定一定的权重值,预测事件发生的概率

这里是summary(data)。我们特别关注 meanwormwt(蠕虫的平均重量)。我最终想要的是在给定某个平均蠕虫重量值的情况下预测事件发生的概率。例如,"what's the probability of the event when the mean worm weight is 0.3246?"

Exclose        DensF       Species       Park       Parkclust       ParkPlot   
 No :2015   Min.   : 8.00   ACSA:1011   BRSP:672   BRSP1  : 168   BRSP11 :  96  
 Yes:2016   1st Qu.:28.00   QUMA:1004   CSP :672   BRSP2  : 168   BRSP2  :  96  
            Median :48.00   RHCA:1009   GLSP:672   BRSP3  : 168   BRSP6  :  96  
            Mean   :37.52   TIAM:1007   GRF :672   BRSP4  : 168   BRSP8  :  96  
            3rd Qu.:48.00               NLP :671   CAM1   : 168   CSP10  :  96  
            Max.   :48.00               SSP :672   CAM2   : 168   CSP2   :  96  
                                                   (Other):3023   (Other):3455  
     Unique           x               y                PlantId        Cluster   
 BRSP11C:  48   Min.   :1.000   Min.   :1.000   NLP8C.1.2  :   2   Min.   :1.0  
 BRSP11E:  48   1st Qu.:2.000   1st Qu.:2.000   SSP10E.2.5 :   2   1st Qu.:2.0  
 BRSP2C :  48   Median :3.000   Median :4.000   BRSP10C.1.1:   1   Median :3.0  
 BRSP2E :  48   Mean   :2.976   Mean   :4.142   BRSP10C.1.2:   1   Mean   :2.5  
 BRSP6C :  48   3rd Qu.:4.000   3rd Qu.:6.000   BRSP10C.1.3:   1   3rd Qu.:3.5  
 BRSP6E :  48   Max.   :6.000   Max.   :8.000   BRSP10C.1.4:   1   Max.   :4.0  
 (Other):3743                                   (Other)    :4023                
      Plot           LowLevXBlks   DeerFPP13park   DeerFPP15park     DeerAvgFrac    
 Min.   : 1.000   SSP10E:2 :   9   Min.   : 1.20   Min.   :0.9167   Min.   :0.1654  
 1st Qu.: 4.000   BRSP11C:1:   8   1st Qu.: 1.60   1st Qu.:1.9167   1st Qu.:0.4878  
 Median : 7.000   BRSP11C:2:   8   Median : 1.90   Median :2.4167   Median :0.5365  
 Mean   : 6.392   BRSP11C:3:   8   Mean   : 8.13   Mean   :2.3194   Mean   :0.5420  
 3rd Qu.: 9.500   BRSP11C:4:   8   3rd Qu.:12.80   3rd Qu.:3.0000   3rd Qu.:0.6673  
 Max.   :12.000   BRSP11C:5:   8   Max.   :20.90   Max.   :3.3333   Max.   :0.8500  
                  (Other)  :3982                                                    
 DeerFPP13plot   DeerFPP15plot    Lt15CnpyOpen    Lt13CnpyOpen      pHH2013    
 Min.   : 0.00   Min.   :0.000   Min.   : 4.04   Min.   : 5.01   Min.   :5.48  
 1st Qu.: 0.00   1st Qu.:1.000   1st Qu.: 9.81   1st Qu.: 8.79   1st Qu.:6.46  
 Median : 1.00   Median :1.500   Median :13.92   Median :13.73   Median :6.89  
 Mean   : 2.29   Mean   :1.663   Mean   :15.44   Mean   :18.27   Mean   :6.93  
 3rd Qu.: 3.00   3rd Qu.:2.000   3rd Qu.:18.51   3rd Qu.:23.69   3rd Qu.:7.48  
 Max.   :11.00   Max.   :7.000   Max.   :58.81   Max.   :57.38   Max.   :8.17  
                                 NA's   :96                                    
    worm16ct       worm16wt        meanwormct      meanwormwt       PlotMoist     
 Min.   : 0.0   Min.   :0.0000   Min.   : 0.00   Min.   :0.0000   Min.   :0.1206  
 1st Qu.:10.0   1st Qu.:0.2729   1st Qu.:13.00   1st Qu.:0.3246   1st Qu.:0.1622  
 Median :22.0   Median :0.6463   Median :23.33   Median :0.6292   Median :0.1873  
 Mean   :26.5   Mean   :1.1226   Mean   :27.92   Mean   :0.9185   Mean   :0.1948  
 3rd Qu.:37.0   3rd Qu.:1.2940   3rd Qu.:40.00   3rd Qu.:1.0901   3rd Qu.:0.2239  
 Max.   :94.0   Max.   :7.5096   Max.   :85.33   Max.   :3.6966   Max.   :0.2927  
 NA's   :96     NA's   :96                                                        
   ClustMoist         AvgJJA          AvgDJF          TotalBA             FireObsF   
 Min.   :0.1366   Min.   :18.90   Min.   :-9.300   Min.   :0.4269   FireObs   :  96  
 1st Qu.:0.1710   1st Qu.:20.90   1st Qu.:-7.200   1st Qu.:1.1455   NotFireObs:3935  
 Median :0.1883   Median :21.30   Median :-6.600   Median :1.4635                    
 Mean   :0.1966   Mean   :21.28   Mean   :-6.688   Mean   :1.5469                    
 3rd Qu.:0.2190   3rd Qu.:21.80   3rd Qu.:-6.300   3rd Qu.:1.9987                    
 Max.   :0.2735   Max.   :24.50   Max.   :-4.700   Max.   :2.7619                    

   Alive12Sum     Alive12SumF  Alive16JuneF  Alive16June    
 Min.   :0.0000   Alive:3927   Alive:1556   Min.   :0.0000  
 1st Qu.:1.0000   Dead : 104   Dead :2379   1st Qu.:0.0000  
 Median :1.0000                NA's :  96   Median :0.0000  
 Mean   :0.9742                             Mean   :0.3954  
 3rd Qu.:1.0000                             3rd Qu.:1.0000  
 Max.   :1.0000                             Max.   :1.0000  
                                            NA's   :96       

我在平均蚯蚓重量上使用了 ns 样条曲线,并将其分为 3 个样条曲线。我需要为此使用什么代码?我尝试使用 predict.ns 或 predict.merMod 但我不知道如何使用,因为我们不只是在寻找总体平均预测值。我们想查看特定权重的预测值。我应该尝试什么命令?我应该怎么办?

这是我的 glmer 代码:

```{r}
nsglm<-glmer(Mort16JuneAPF ~ Exclose*Species + ns(meanwormwt, df=3, knots=c(0.3246,1.0901))*Species + (1 | Park) + (1 | Cluster:Park) + (1 | Plot:Cluster:Park) + (1|Exclose:ParkPlot) + (1 | x:Unique), data = mydata, family = binomial, control=glmerControl(optimizer="bobyqa", calc.derivs = FALSE))
summary(nsglm)
```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: Mort16JuneAPF ~ Exclose * Species + ns(meanwormwt, df = 3, knots = c(0.3246,  
    1.0901)) * Species + (1 | Park) + (1 | Cluster:Park) + (1 |  
    Plot:Cluster:Park) + (1 | Exclose:ParkPlot) + (1 | x:Unique)
   Data: mydata
Control: glmerControl(optimizer = "bobyqa", calc.derivs = FALSE)

     AIC      BIC   logLik deviance df.resid 
  4253.3   4410.2  -2101.7   4203.3     3910 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2758 -0.6492  0.2821  0.6346  4.0010 

Random effects:
 Groups            Name        Variance Std.Dev.
 x:Unique          (Intercept) 0.01345  0.1160  
 Exclose:ParkPlot  (Intercept) 0.51799  0.7197  
 Plot:Cluster:Park (Intercept) 0.00000  0.0000  
 Cluster:Park      (Intercept) 0.28753  0.5362  
 Park              (Intercept) 0.03863  0.1965  
Number of obs: 3935, groups:  
x:Unique, 564; Exclose:ParkPlot, 142; Plot:Cluster:Park, 71; Cluster:Park, 24; Park, 6

Fixed effects:
                                                               Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                                      0.6957     0.4435   1.569 0.116746    
ExcloseYes                                                      -2.7133     0.2090 -12.981  < 2e-16 ***
SpeciesQUMA                                                      1.2551     0.3827   3.279 0.001041 ** 
SpeciesRHCA                                                     -0.6303     0.3407  -1.850 0.064331 .  
SpeciesTIAM                                                     -0.5476     0.3500  -1.565 0.117687    
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1               1.2171     0.6496   1.874 0.060986 .  
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2               0.8967     0.9645   0.930 0.352534    
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3              -0.2013     0.7047  -0.286 0.775132    
ExcloseYes:SpeciesQUMA                                           1.5177     0.2375   6.391 1.65e-10 ***
ExcloseYes:SpeciesRHCA                                           2.2524     0.2138  10.533  < 2e-16 ***
ExcloseYes:SpeciesTIAM                                           1.0164     0.2295   4.430 9.44e-06 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1  -0.3065     0.6130  -0.500 0.617043    
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1  -1.0661     0.5614  -1.899 0.057555 .  
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1   0.6600     0.6074   1.087 0.277240    
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2  -2.1818     0.8225  -2.653 0.007984 ** 
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2  -1.3299     0.7390  -1.800 0.071897 .  
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2   3.0146     0.7774   3.878 0.000105 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3  -2.8120     0.5579  -5.041 4.64e-07 ***
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3  -0.4749     0.5100  -0.931 0.351807    
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3   2.4477     0.5762   4.248 2.16e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

您需要将 predict()newdata 参数一起使用。您需要为每个 fixed-effect 输入变量指定 some 值,例如

nd <- with(mydata,
   expand.grid(Exclose=levels(Exclose), Species=levels(Species))
nd$meanwormwt <- 0.361
predict(nsglm, re.form=~0, newdata=nd)

re.form=~0 指定您要进行 population-level 预测(即,对于随机效应分组因子的 new/unknown 值)。