为什么单击保存按钮后字体大小会发生变化?

Why does the font size change after I click the save button?

首先 post 我希望我做的一切都是正确的。 我正在使用 RStudio:版本 1.1.423; R 版本:3.4.2,OS:Windows 10

小问题总结: 我启动了一个基于 gwidgets 的 GUI,文本以所需的字体大小显示,但是当我单击保存按钮时,它突然变成了较小的字体.

上下文: 我目前正在进行系统的文献综述,我使用 mjlajeunesse (https://github.com/cran/metagear) 的 Metagear 软件包来筛选摘要并决定是否应该保留包括他们。这是原始 GUI 的图片: Original Abstract Screener GUI

功能简短描述: 我只需单击其中一个按钮(是、否、可能),摘要筛选器就会转到文件中的下一个摘要。然后我点击保存以保存我的进度。

我对代码所做的更改: 但是,我添加了一些额外的字段,所以我不得不更改该行为,这样它就不会立即跳转到下一个条目当我点击其中一个按钮时。所以我将这部分功能与保存功能合并。 现在我得到以下行为:当我第一次打开抽象筛选器时,字体大小如上图所示: Adapted Abstract Screener before clicking Save & Next

我一点击“保存并下一步”,它就会显示下一个摘要(根据需要),但突然字体变小了,读起来很不舒服,因为它太小了,如下所示 Adapted Abstract Screener after clicking Save & Next

这是我 use/adapted 覆盖 metagear 包的原始功能的代码。我迭代地调整了代码,所以我只包含了使事情正常工作所需的 metagear 包的功能。 这是我正在使用的代码(我在底部包含了用于执行不同功能的代码,包括一些示例数据框,而不是我的 CSV 文件):

# Load libraries

library(metagear)
library(EBImage)
library(cairoDevice)
library(gWidgets)
library(gWidgetsRGtk2)
library(gWidgets2)
library(gWidgets2RGtk2)
library(RGtk2)
library(utils)

##############################
#                   dirty adaptations for the METAGEAR package start here
##############################


##########################
#  better_effort_utils (important for effort_save)
##########################

effort_save <- function (aDataFrame, 
                         column_name = "REVIEWERS", 
                         directory = getwd(), 
                         quiet = FALSE) {

  split_List <- split(aDataFrame, f = aDataFrame[, column_name])
  lapply(split_List, function(x, column_name) {
    fileName <- paste0("effort_", x[1, column_name], ".csv")
    if(file.exists(file.path(directory, fileName))) {
      while (file.exists(file.path(directory, fileName)) != FALSE) fileName <- renameFile(fileName)
      if(!quiet) message(paste0("File already existed, renamed: ", fileName))
    }
    fileName <- file.path(directory, fileName)
    write.csv(x, file = fileName, na = "NA", row.names = FALSE)
  }, column_name = column_name)

  if(!quiet) message(paste0(length(split_List), " files saved in: ", directory))
}

######################
#        better_effort_initialize
######################

better_effort_initialize <- function(aDataFrame,
                                     study_ID = TRUE,
                                     unscreenedValue = "not vetted",
                                     unscreenedCommentValue = "Please paste text here",
                                     studyTypeValue = "not vetted",
                                     studyTypeCommentValue = "Please paste text here",
                                     dual = FALSE, 
                                     front = TRUE) {
  # adding new columns start, add the new columns as part of the "if" statement as well as the "else" statement
  if(dual == TRUE) {
    new_cols <- data.frame(REVIEWERS_A = NA, 
                           INCLUDE_A = unscreenedValue,
                           REVIEWERS_B = NA, 
                           INCLUDE_B = unscreenedValue,
                           INCLUDE_COMMENT = unscreenedCommentValue,
                           TYPE_OF_STUDY = studyTypeValue,
                           TYPE_OF_STUDY_COMMENT = studyTypeCommentValue) # There will have to be a version A and version B, just like with the reviewers

  }
  else new_cols <- data.frame(REVIEWERS = NA, 
                              INCLUDE = unscreenedValue,
                              INCLUDE_COMMENT = unscreenedCommentValue,
                              TYPE_OF_STUDY = studyTypeValue,
                              TYPE_OF_STUDY_COMMENT = studyTypeCommentValue)

  if(study_ID == TRUE) new_cols <- cbind(data.frame(STUDY_ID = 1:nrow(aDataFrame)), 
                                         new_cols)

  if(front == TRUE) newDataFrame <- cbind(new_cols, aDataFrame)
  else newDataFrame <- cbind(aDataFrame, new_cols)

  return(newDataFrame)
}

#################################
#       better_effort_distribute
#################################

better_effort_distribute <- function (aDataFrame = NULL,
                                      dual = FALSE,
                                      reviewers = theTeam, 
                                      column_name = "REVIEWERS", 
                                      effort = NULL, 
                                      initialize = FALSE,
                                      save_split = FALSE,
                                      directory = getwd() ) {

  if(is.null(reviewers)) .metagearPROBLEM("error", 
                                          "no reviewers were assigned")
  if(is.null(aDataFrame)) .metagearPROBLEM("error", 
                                           "a dataframe with refs was not specified")

  number_REFS <- nrow(aDataFrame)
  number_reviewers <- length(reviewers)

  # add REVIEWER, STUDY_ID, and INCLUDE columns to reference library
  if(initialize == TRUE) aDataFrame <- better_effort_initialize(aDataFrame,
                                                                dual = dual)

  if(dual == TRUE) {
    if(!is.null(effort)) .metagearPROBLEM("error", 
                                          "can only assign dual effort evenly among reviewers")
    if(number_reviewers %% 2 == 1) .metagearPROBLEM("error", 
                                                    "can only assign dual effort with an even number of reviewers")

    reviewers_A <- reviewers[1:number_reviewers %% 2 == 1]
    theEffort_A <- gl(length(reviewers_A), 
                      ceiling(number_REFS / length(reviewers_A)), 
                      number_REFS, 
                      labels = reviewers_A)

    reviewers_B <- reviewers[1:number_reviewers %% 2 == 0]
    theEffort_B <- gl(length(reviewers_B), 
                      ceiling(number_REFS / length(reviewers_B)), 
                      number_REFS, 
                      labels = reviewers_B)

    dualEffort <- data.frame(A = theEffort_A, B = theEffort_B)
    theEffort <- dualEffort[sample(nrow(dualEffort), 
                                   nrow(dualEffort), replace = FALSE), ]

    aDataFrame["REVIEWERS_A"] <- theEffort["A"]
    aDataFrame["REVIEWERS_B"] <- theEffort["B"]
  }
  else {

    # generate reviewers tasks evenly or via custom 'effort' 
    if(is.vector(effort) && length(unique(effort)) != 1) {
      if(sum(effort) != 100) .metagearPROBLEM("error", 
                                              "Effort does not sum to 100.")
      theEffort <- rep(reviewers, round((number_REFS * (effort / 100))))
    } else {
      theEffort <- gl(number_REFS, 
                      ceiling(number_REFS / number_reviewers), 
                      number_REFS, 
                      labels = reviewers)
    }

    # randomly populate REVIEWERS column with tasks
    aDataFrame[, column_name] <- sample(theEffort, 
                                        length(theEffort), 
                                        replace = FALSE)
  }

  # splits reference library into seperate reviewer csv files and
  # hides teams if dual reviewing
  if(save_split == TRUE) {
    if(dual == TRUE) {
      removeVars <- names(aDataFrame) %in% c("REVIEWERS_B", "INCLUDE_B")
      effort_save(aDataFrame[!removeVars], 
                  column_name = "REVIEWERS_A", directory)
      removeVars <- names(aDataFrame) %in% c("REVIEWERS_A", "INCLUDE_A")
      effort_save(aDataFrame[!removeVars], 
                  column_name = "REVIEWERS_B", directory)
    }
    else effort_save(aDataFrame, column_name, directory)
  }

  return(aDataFrame)
}

#######################################
#       better_abstract_screener
#######################################


#' @param file The file name and location of a .csv file containing the 
#'    abstracts and titles.  The .csv file should have been initialized with
#'    \code{effort_initialize} and populated with screeners (reviewers) using
#'    \code{better_effort_distribute}.
#' @param aReviewer The name (a string) of the reviewer to screen abstracts.  
#'    It is used when there are multiple reviewers assigned to screen abstracts.
#'    The default column label is "REVIEWERS" as initialized with 
#'    \code{better_effort_distribute}.
#' @param reviewerColumnName The name of the column heading in the .csv file 
#'    that contains the reviewer names that will screen abstracts.  The default 
#'    column label is "REVIEWERS". 
#' @param unscreenedColumnName The name of the column heading in the .csv file 
#'    that contains the screening outcomes (i.e. vetting outcomes by a reviewer). 
#'    Unscreened references are by default labeled as "not vetted".  The
#'    reviewer then can code to "YES" (is a relevant study), "NO" is not relevant
#'    and should be excluded, or "MAYBE" if the title/abstract is missing or
#'    does not contains enough information to fully assess inclusivity.
#'    The default label of this column is "INCLUDE".  
#' @param unscreenedValue Changes the default coding (a string) of "not vetted"
#'    that designates whether an abstract remains to be screened or vetted.   
#' @param abstractColumnName The name of the column heading in the .csv file 
#'    that contains the abstracts. The default label of this column is 
#'    "ABSTRACT".
#' @param titleColumnName The name of the column heading in the .csv file 
#'    that contains the titles. The default label of this column is "TITLE".
#' @param browserSearch Change the url for the browser title search; the 
#'    default is Google.
#' @param protect When \code{"TRUE"}, prevents the title and abstract from being
#'    clicked, selected or edited. 
#' @param fontSize Change the font size of the title and abstract text.
#' @param windowWidth Change the default width of the GUI window.
#' @param windowHeight Change the default height of the GUI window.
#' @param buttonSize Change the default size of the "YES" and "NO" buttons.
#'
#'
#' @return NULL
#'
#' @examples \dontrun{
#'
#' data(example_references_metagear)
#' better_effort_distribute(example_references_metagear, 
#'                   initialize = TRUE, reviewers = "marc", save_split = TRUE)
#' abstract_screener("effort_marc.csv", aReviewer = "marc")
#'}
#'
#' @note \strong{Installation and troubleshooting}\cr\cr Upon first use, 
#'    \code{abstract_screener} will download the gWidgets package
#'    and associated toolkits needed to build GUI interfaces.  A small window will
#'    also prompt you to download GTK+ asking "Need GTK+ ?".  From the listed
#'    options answer: "Install GTK+" and click 'OK'.  Once installed these will
#'    not be downloaded again.  Sometimes there is an issue with the installation
#'    of GTK+, see \url{http://www.learnanalytics.in/blog/?p=31} for advice based 
#'    on the \code{Rattle} R Package (both \code{Rattle} and \code{metagear} use
#'    the same GUI dependencies).  \cr\cr \strong{How to use the screener}
#'    \cr\cr The GUI itself will appear as a single window with the first 
#'    title/abstract listed in the .csv file. If abstracts have already been 
#'    screened/coded, it will begin at the nearest reference labeled as 
#'    "not vetted". The SEARCH WEB button opens the default browser and 
#'    searches Google with the title of the reference. The YES, MAYBE, NO 
#'    buttons, which also have shortcuts ALT-Y and ALT-N, are used to code the 
#'    inclusion/exclusion of the reference. Once clicked/coded the next 
#'    reference is loaded. The SAVE button is used to save the coding progress 
#'    of screening tasks. It will save coding progress directly to the 
#'    loaded .csv file. \strong{Closing the GUI and not saving will result in 
#'    the loss of screening efforts relative to last save.}  \cr\cr There is 
#'    also an ISSUE FIXES menu bar with quick corrections to screening errors. 
#'    These include ISSUE FIXES: REFRESH TITLE AND ABSTRACT TEXT which reloads 
#'    the text of the current abstract in case portions were deleted when 
#'    copying and pasting sections (this can be avoided if 
#'    \code{protect = TRUE} is enabled), ISSUE FIXES: STATUS OF CURRENT ABSTRACT 
#'    which provides information on whether or not the abstract was previously 
#'    screened, and ISSUE FIXES: RETURN TO PREVIOUS ABSTRACT that  
#'    backtracks to the previous abstract if a selection error occurred (note a 
#'    warning will appear of there is a change to its inclusion/exclusion 
#'    coding).        
#'
#' @import gWidgets
#' @import gWidgetsRGtk2
#' @importFrom utils browseURL read.csv write.csv
#' @export abstract_screener

############################

better_abstract_screener <- function(file = file.choose(),
                                     aReviewer = NULL, 
                                     reviewerColumnName = "REVIEWERS",
                                     unscreenedColumnName = "INCLUDE",                             
                                     unscreenedValue = "not vetted",
                                     unscreenedCommentColumnName = "INCLUDE_COMMENT",
                                     unscreenedCommentValue = "",
                                     studyTypeColumnName = "TYPE_OF_STUDY",
                                     studyTypeValue = "not vetted",
                                     studyTypeCommentColumnName = "TYPE_OF_STUDY_COMMENT",
                                     studyTypeCommentValue = "",
                                     abstractColumnName = "Abstract",
                                     titleColumnName = "Title",
                                     browserSearch = "https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=",
                                     protect = FALSE,
                                     fontSize = 13,
                                     windowWidth = 700,
                                     windowHeight = 400,
                                     buttonSize = 30) {

  # get file with abstract
  aDataFrame <- read.csv(file, header = TRUE)

  # subset abstracts based on the current screener (aka 'reviewer')

  subData <- subset(aDataFrame, aDataFrame[reviewerColumnName] == aReviewer)
  subData <- data.frame(lapply(subData, as.character), stringsAsFactors = FALSE)

  # check if all abstracts have been already vetted
  if(unscreenedValue %in% subData[, unscreenedColumnName] ) {
    # start screener at first unvetted abstract
    currentItem <- max.col(t(subData[unscreenedColumnName] == unscreenedValue), 
                           "first")
  } else {
    .metagearPROBLEM("error",
                     paste("all abstracts have already been screened, 
                           no more abstracts coded as:", unscreenedValue))
    }

  options("guiToolkit" = "RGtk2")

  # used to update the reference list
  theAnswer <- function(theValue, ...) {
      updateAll(theValue, ...)
    }

  theAnswer_INCLUDE_COMMENT <- function(theValue_INCLUDE_COMMENT, ...) {
    updateAll_INCLUDE_COMMENT(theValue_INCLUDE_COMMENT, ...)
    }

  theAnswer_ToS <- function(theValue_ToS, ...) {
      updateAll_ToS(theValue_ToS, ...)
    }

  theAnswer_ToS_COMMENT <- function(theValue_ToS_COMMENT, ...) {
    updateAll_ToS_COMMENT(theValue_ToS_COMMENT, ...)
    }


  # helper function used to update and keep track of screened abstracts
  updateAll <- function(theValue, ...) {

    if(currentItem <= nrow(subData)) {
      subData[[currentItem, unscreenedColumnName]] <<- theValue
      }
    }

  updateAll_INCLUDE_COMMENT <- function(theValue_INCLUDE_COMMENT, ...) {  ################### EXPERIMENTAL
    if(currentItem <= nrow(subData)) {
      subData[[currentItem, unscreenedCommentColumnName]] <<- theValue_INCLUDE_COMMENT
      }
    }

  updateAll_ToS <- function(theValue_ToS, ...) {

    if(currentItem <= nrow(subData)) {
      subData[[currentItem, studyTypeColumnName]] <<- theValue_ToS
      }
    }

  updateAll_ToS_COMMENT <- function(theValue_ToS_COMMENT, ...) {

    if(currentItem <= nrow(subData)) {
      subData[[currentItem, studyTypeCommentColumnName]] <<- theValue_ToS_COMMENT
      }
    }


  ####################
  # START of SCREENER GUI
  ####################  

  win <- gwindow("metagear: Abstract Screener", visible = TRUE)

  paned <- ggroup(container = win, horizontal = FALSE)

  # Frame(s) for title, abstract and websearch button
  #####
  #beginnig frame_TITLE

  frame_TITLE <- gframe("Title", container = paned, horizontal = TRUE)

  text_TITLE <- gtext(subData[currentItem, titleColumnName], 
                      container = frame_TITLE, 
                      expand = TRUE, 
                      font.attr = list(style = "normal", size = fontSize))
  size(text_TITLE) <- c(windowWidth, 50)

  if(protect == TRUE) enabled(text_TITLE) <- FALSE

  addSpace(frame_TITLE, 2)

  aButton_webSearch <- gbutton("Search\n Web", 
                               container = frame_TITLE, 
                               handler = function(h, ...) 
                                 browseURL(paste0(browserSearch, 
                                                  subData[currentItem, titleColumnName]))) 
  size(aButton_webSearch) <- c(50, 40)

  addSpace(frame_TITLE, 5)

  # end of frame_TITLE
  # beginning frame_Abstract

  frame_ABSTRACT <- gframe("Abstract", container = paned, horizontal = FALSE) 

  text_ABSTRACT <- gtext(subData[currentItem, abstractColumnName], 
                         container = frame_ABSTRACT, 
                         expand = TRUE, 
                         font.attr = list(style = "normal", size = fontSize)
  )

  size(text_ABSTRACT) <- c(windowWidth + 50, 300)

  if(protect == TRUE) enabled(text_ABSTRACT) <- FALSE

  # end of frame_ABSTRACT

  # beginning: Type of Study (ToS), buttons and comment

  frame_TYPE_OF_STUDY <- gframe("Type of Study", container = paned, horizontal = TRUE)
  addSpace(frame_TYPE_OF_STUDY, 20)

  radioButtonNames_ToS <- c("not vetted", "empirical", "conceptual", "review")

  radioButtons_ToS <- gradio(radioButtonNames_ToS, selected = which(radioButtonNames_ToS == subData[currentItem, studyTypeColumnName]), horizontal = FALSE, container = frame_TYPE_OF_STUDY,
                             handler = function(h,...){
                               svalue(h) <- subData[currentItem, studyTypeColumnName]
                               theAnswer_ToS(theValue_ToS = radioButtonNames_ToS[svalue(radioButtons_ToS, index = TRUE)], ...) # EXPERIMENTAL: Need to find a way t make the 3 a dynamic option that shows current selection (Current solution seems to be working)
                             }
  )

  frame_TYPE_OF_STUDY_COMMENT <- gframe("Please copy the text snippet upon which you base your decision", 
                                        container = frame_TYPE_OF_STUDY, horizontal = TRUE)

  text_TYPE_OF_STUDY_COMMENT <- gtext(subData[currentItem, studyTypeCommentColumnName], 
                                      container = frame_TYPE_OF_STUDY_COMMENT,
                                      #container = frame_TYPE_OF_STUDY, ### change to this frame and disable frame_TYPE_OF_STUDY_COMMENT, if you want the text field width to be expandable
                                      expand = TRUE, 
                                      font.attr = list(style = "normal", size = fontSize),
                                      handler = function(h, ...) {
                                        theAnswer_ToS_COMMENT(theValue_ToS_COMMENT = svalue(text_TYPE_OF_STUDY_COMMENT))
                                      }
  )

  size(text_TYPE_OF_STUDY_COMMENT) <- c(windowWidth, 70)


  # end: Type of Study (ToS), buttons and comment


  # beginning: Include/Exclude (YES/NO), buttons and comment

  frame_INCLUDE <- gframe("Should the Abstract be included?", container = paned, horizontal = TRUE)
  addSpace(frame_INCLUDE, 20)

  radioButtonNames_INCLUDE <- c("not vetted", "YES", "NO", "MAYBE")

  radioButtons_INCLUDE <- gradio(radioButtonNames_INCLUDE, selected = which(radioButtonNames_INCLUDE == subData[currentItem, unscreenedColumnName]), 
                                 horizontal = FALSE, container = frame_INCLUDE,
                                 handler = function(h,...){
                                   svalue(h) <- subData[currentItem, unscreenedColumnName]
                                   theAnswer(theValue = radioButtonNames_INCLUDE[svalue(radioButtons_INCLUDE, index = TRUE)], ...) 
                                 }
  )

  frame_INCLUDE_COMMENT <- gframe("Please copy the text snippet upon which you base your decision", container = frame_INCLUDE,
                                  horizontal = TRUE)

  text_INCLUDE_COMMENT <- gtext(subData[currentItem, unscreenedCommentColumnName], 
                                container = frame_INCLUDE_COMMENT, 
                                # container = frame_INCLUDE, ### change to this frame and disable frame_INCLUDE_COMMENT, if you want the text field width to be expandable
                                expand = TRUE, 
                                font.attr = list(style = "normal", size = fontSize),
                                handler = function(h, ...) {
                                  theAnswer_INCLUDE_COMMENT(theValue_INCLUDE_COMMENT = svalue(text_INCLUDE_COMMENT))
                                }
  )
  size(text_INCLUDE_COMMENT) <- c(windowWidth, 70)

  #end:  Include/Exclude (YES/NO), buttons and comment

  #beginning: Progress and Save

  buttons_paned <- ggroup(container = paned)

  addSpace(buttons_paned, 50)


  frame_PROGRESS <- gframe("Progress", container = buttons_paned, expand = TRUE)

  addSpace(frame_PROGRESS, 10)

  text_progress <- glabel(paste0("Reviewer: ", 
                                 aReviewer, 
                                 "  |  ", 
                                 round(((currentItem - 1.0)/nrow(subData)) * 100, digits = 1),
                                 "% complete (", currentItem, " of ", 
                                 nrow(subData) , ")"), 
                          container = frame_PROGRESS)


  aButton_save <- gbutton("SAVE & CONTINUE", 
                          container = frame_PROGRESS, 
                          handler = function(h, ...) 
                          {
                            {
                              write.csv(subData, 
                                        file = file, #file was dataFilename
                                        row.names = FALSE)
                              svalue(text_lastSaved) <- paste("last saved: ", Sys.time())
                            }

                            currentItem <<- currentItem + 1

                            if(currentItem > nrow(subData)) 
                            {svalue(text_ABSTRACT) <- "You have screened all the Abstracts!"
                            svalue(text_TITLE) <- ""
                            } else 
                            {svalue(text_ABSTRACT) <- subData[currentItem, abstractColumnName]
                            svalue(text_TITLE) <- subData[currentItem, titleColumnName]
                            svalue(text_progress) <- paste0(
                              round(((currentItem - 1.0)/nrow(subData)) * 100, digits = 1),
                              "% complete (", currentItem, " of ", nrow(subData), ")")
                            svalue(text_TYPE_OF_STUDY_COMMENT) <- subData[currentItem, studyTypeCommentColumnName]
                            svalue(radioButtons_ToS) <- subData[currentItem, studyTypeColumnName]
                            svalue(radioButtons_INCLUDE) <- subData[currentItem, unscreenedColumnName]
                            svalue(text_INCLUDE_COMMENT) <- subData[currentItem, unscreenedCommentColumnName]
                            }
                          }
  )

  size(aButton_save) <- c(130, 40)
  text_lastSaved <- glabel(paste("  last saved: not this session"), # empty space at beginning on purpose to leave some distance to button, as addSpace() screwed things up
                           container = frame_PROGRESS)

  #end of  Progress and Save
  #end of buttons_paned
  #end of paned

  visible(win) <- TRUE

  # end of win
  }


###############
#   Preparation of the files and starting of the GUI 
###############

# Set working directory
setwd("C:/Users/Hilser/Documents/R")

# Add team member(s)
theTeam <- c("Stefan")


#import .csv-file and name it review" ##### REPLACED BY SAMPLE DATA BELOW
# review <- read.csv("C:/Users/Hilser/Documents/R/Metagear/Better_Metagear/review_duplicates_removed.csv", header = TRUE, sep = ",")

# Create Sample Data instead of importing .csv-file

Title <- c("Title 1", "Title 2", "Title 3", "Title 4")
Abstract <- c( "Abstract 1", "Abstract 2", "Abstract 3", "Abstract 4")

review <- data.frame(Title, Abstract)

# Prepare file: Adding columns "STUDY_ID", "REVIEWERS", "INCLUDE" (and fill with "not vetted"), "INCLUDE_COMMENT", "TYPE_OF_STUDY"
review_initialized <- better_effort_initialize(review, study_ID = TRUE, unscreenedValue = "not vetted", dual = FALSE, front = TRUE)

# distribute effort amongst Reviewers, adding their name (reviewers = ) to the column "REVIEWERS"
review_distributed <- better_effort_distribute(review_initialized, dual = FALSE, reviewers = theTeam, column_name = "REVIEWERS",
                                               effort = 100, initialize = FALSE, save_split = TRUE)

# opens a graphical user interface (GUI) that allows for abstract screening
better_abstract_screener("effort_Stefan.csv", aReviewer = "Stefan")

根据所描述的行为,我假设错误出在以下函数之一中:

抱歉,我的猜测是您为 text_TITLE 指定的 font.attribute 在您调用 svalue(text_TITLE) <- 后未被保留。简单的解决方案是在设置文本后调用 font(text_TITLE)<- ...。正确的解决方案是修复此方法:https://github.com/jverzani/gWidgets2RGtk2/blob/master/R/gtext.R#L84 (this should use the method insert_text https://github.com/jverzani/gWidgets2RGtk2/blob/master/R/gtext.R#L160 确实会调整字体属性。

考虑到这一点,您可以试试这个 1-2 拳来设置文本:

svalue(text_TITLE) <- "" text_TITLE$insert_text(new_text, "beginning")