在数据集中为每个 ID 填充 N/As
Fill N/As per ID in data set
我在 R 中的数据集如下所示,其中我有多个 ID 和年份,但并不总是街道、州和国家/地区的信息。
ID Year Street State Country
1 2000 123 Main St CA USA
1 2001 N/A N/A N/A
1 2002 N/A N/A N/A
...
1 2017 N/A N/A N/A
2 2001 123 Bloom Rd CA USA
2 2002 123 Bloom Rd CA USA
2 2003 N/A N/A N/A
...
2 2017 N/A N/A N/A
...
我的目标是用适当的值填写 N/As,即每个 ID 的对应值。因此,对于 ID“1”,街道 N/As 下应该有“123 Main Street”,依此类推。
谢谢!
这里是 data.tbale 和 dplyr
的解决方案
df <- read.table(text = "ID, Year, Street, State, Country
1, 2000, 123 Main St, CA, USA
1, 2001, N/A, N/A, N/A
1, 2002, N/A, N/A, N/A
1, 2017, N/A, N/A, N/A
2, 2001, 123 Bloom Rd, CA, USA
2, 2002, 123 Bloom Rd, CA, USA
2, 2003, N/A, N/A, N/A
2, 2017, N/A, N/A, N/A",header = T,sep = ",")
library(dplyr)
df %>%
group_by(ID) %>%
mutate_at(vars('Street', 'State', 'Country'), funs(.[!is.na(.)][1]))
library(data.table)
df <- setDT(df)
coltochange <- c("Street", "State", "Country")
df[, c(coltochange) := lapply(.SD,function(x){x[!is.na(x)][1]}),.SDcols = coltochange ,by = ID]
可以考虑zoo的na.locf函数:
library(zoo)
na.locf(df)
尝试 tidyverse
方法:
df <- read_table("ID Year Street State Country #importing the data
1 2000 123_Main_St CA USA
1 2001 N/A N/A N/A
1 2002 N/A N/A N/A
1 2017 N/A N/A N/A
2 2001 123_Bloom_Rd CA USA
2 2002 123_Bloom_Rd CA USA
2 2003 N/A N/A N/A
2 2017 N/A N/A N/A") %>%
separate("ID Year Street State Country", c("ID", "Year", "Street", "State", "Country"), sep = " ") %>% # cleaning the columns
group_by(ID) %>% # grouping by vars with same ID(Information)
mutate_at(vars('Street', 'State', 'Country'), funs(.[.!= "N/A"][1])) # replace NA with information of same ID without NA (remember NA is still a string from import)
我在 R 中的数据集如下所示,其中我有多个 ID 和年份,但并不总是街道、州和国家/地区的信息。
ID Year Street State Country
1 2000 123 Main St CA USA
1 2001 N/A N/A N/A
1 2002 N/A N/A N/A
...
1 2017 N/A N/A N/A
2 2001 123 Bloom Rd CA USA
2 2002 123 Bloom Rd CA USA
2 2003 N/A N/A N/A
...
2 2017 N/A N/A N/A
...
我的目标是用适当的值填写 N/As,即每个 ID 的对应值。因此,对于 ID“1”,街道 N/As 下应该有“123 Main Street”,依此类推。
谢谢!
这里是 data.tbale 和 dplyr
的解决方案df <- read.table(text = "ID, Year, Street, State, Country
1, 2000, 123 Main St, CA, USA
1, 2001, N/A, N/A, N/A
1, 2002, N/A, N/A, N/A
1, 2017, N/A, N/A, N/A
2, 2001, 123 Bloom Rd, CA, USA
2, 2002, 123 Bloom Rd, CA, USA
2, 2003, N/A, N/A, N/A
2, 2017, N/A, N/A, N/A",header = T,sep = ",")
library(dplyr)
df %>%
group_by(ID) %>%
mutate_at(vars('Street', 'State', 'Country'), funs(.[!is.na(.)][1]))
library(data.table)
df <- setDT(df)
coltochange <- c("Street", "State", "Country")
df[, c(coltochange) := lapply(.SD,function(x){x[!is.na(x)][1]}),.SDcols = coltochange ,by = ID]
可以考虑zoo的na.locf函数:
library(zoo)
na.locf(df)
尝试 tidyverse
方法:
df <- read_table("ID Year Street State Country #importing the data
1 2000 123_Main_St CA USA
1 2001 N/A N/A N/A
1 2002 N/A N/A N/A
1 2017 N/A N/A N/A
2 2001 123_Bloom_Rd CA USA
2 2002 123_Bloom_Rd CA USA
2 2003 N/A N/A N/A
2 2017 N/A N/A N/A") %>%
separate("ID Year Street State Country", c("ID", "Year", "Street", "State", "Country"), sep = " ") %>% # cleaning the columns
group_by(ID) %>% # grouping by vars with same ID(Information)
mutate_at(vars('Street', 'State', 'Country'), funs(.[.!= "N/A"][1])) # replace NA with information of same ID without NA (remember NA is still a string from import)