Julia:向量化代码与去向量化代码

Julia: vectorized vs. devectorized code

据我了解,Julia 应该使 for 循环更快,并且与矢量化操作一样快。我编写了一个简单函数的三个版本,该函数使用 for 循环查找距离,使用矢量化操作,使用 DataFrames:

x = rand(500)
y = rand(500)
a = rand()
b = rand()

function devect()
    dist = Array(Float64, 0)
    twins = Array(Float64, 0,2)

    for i in 1:500
        dist = [dist; sqrt((x[i] - a)^2 + (y[i] - b)^2)]
        if dist[end] < 0.05
            twins = [twins; [x y][end,:]]
        end
    end

    return twins
end

function vect()
    d = sqrt((x-a).^2 + (y-b).^2)
    return [x y][d .< 0.05,:]
end

using DataFrames

function df_vect()
    df = DataFrame(x=x, y=y)
    dist = sqrt((df[:x]-a).^2 + (df[:y]-b).^2)

    return df[dist .< 0.05,:]
end

n = 10^3

@time for i in [1:n] devect() end
@time for i in [1:n] vect() end
@time for i in [1:n] df_vect() end

输出:

elapsed time: 4.308049576 seconds (1977455752 bytes allocated, 24.77% gc time)
elapsed time: 0.046759167 seconds (37295768 bytes allocated, 54.36% gc time)
elapsed time: 0.052463997 seconds (30359752 bytes allocated, 49.44% gc time)

为什么向量化版本的执行速度如此之快?

跟进我对用于在 devect 中构建解决方案的方法的评论。这是我的代码

julia> x, y, a, b = rand(500), rand(500), rand(), rand()

julia> function devect{T}(x::Vector{T}, y::Vector{T}, a::T, b::T)
       res = Array(T, 0)
       dim1 = 0
       for i = 1:size(x,1)
           if sqrt((x[i]-a)^2+(y[i]-b)^2) < 0.05
               push!(res, x[i])
               push!(res, y[i])
               dim1 += 1
           end
       end
       reshape(res, (2, dim1))'
   end
devect (generic function with 1 method)

julia> function vect{T}(x::Vector{T}, y::Vector{T}, a::T, b::T)
       d = sqrt((x-a).^2+(y-b).^2)
       [x y][d.<0.05, :]
   end
vect (generic function with 1 method)

julia> @time vect(x, y, a, b)
elapsed time: 3.7118e-5 seconds (37216 bytes allocated)
2x2 Array{Float64,2}:
 0.978099  0.0405639
 0.94757   0.0224974

julia> @time vect(x, y, a, b)
elapsed time: 7.1977e-5 seconds (37216 bytes allocated)
2x2 Array{Float64,2}:
 0.978099  0.0405639
 0.94757   0.0224974

julia> @time devect(x, y, a, b)
elapsed time: 1.7146e-5 seconds (376 bytes allocated)
2x2 Array{Float64,2}:
 0.978099  0.0405639
 0.94757   0.0224974

julia> @time devect(x, y, a, b)
elapsed time: 1.3065e-5 seconds (376 bytes allocated)
2x2 Array{Float64,2}:
 0.978099  0.0405639
 0.94757   0.0224974

julia> @time devect(x, y, a, b)
elapsed time: 1.8059e-5 seconds (376 bytes allocated)
2x2 Array{Float64,2}:
 0.978099  0.0405639
 0.94757   0.0224974

可能有更快的方法来执行 devect 解决方案,但请注意分配的字节数的差异。如果去向量化解决方案比向量化解决方案分配更多的内存,它可能是错误的(至少在 Julia 中是这样)。

https://docs.julialang.org/en/v1/manual/performance-tips/#Avoid-global-variables

你的代码到处都使用非常量全局变量,这意味着你基本上回到了解释语言的性能领域,因为在编译时不能保证它们的类型。为了快速加速,只需在所有全局变量赋值前加上 const.

您的去向量化代码效率不高。

我做了以下修改:

  • 使所有全局变量常量
  • 我预先分配了输出向量,而不是每次都附加
  • 我展示了两种不同的方法,您可以用更直接的方式对输出进行去向量化

    const x = rand(500)
    const y = rand(500)
    const a = rand()
    const b = rand()
    
    function devect()
        dist = Array(Float64, 500)
    
        for i in 1:500
            dist[i] = sqrt((x[i] - a)^2 + (y[i] - b)^2)
        end
    
        return [x y][dist .< 0.05,:]
    end
    
    function devect2()
        pairs = Array(Float64, 500, 2)
    
        for i in 1:500
            dist = sqrt((x[i] - a)^2 + (y[i] - b)^2)
            if dist < 0.05
                pairs[i,:] = [x[i], y[i]]
            end
        end
    
        return pairs
    end
    
    function vect()
        d = sqrt((x-a).^2 + (y-b).^2)
        return [x y][d .< 0.05,:]
    end
    
    using DataFrames
    
    function df_vect()
        df = DataFrame(x=x, y=y)
        dist = sqrt((df[:x]-a).^2 + (df[:y]-b).^2)
    
        return df[dist .< 0.05,:]
    end
    
    const n = 10^3
    
    @time for i in [1:n] devect() end
    @time for i in [1:n] devect2() end
    @time for i in [1:n] vect() end
    @time for i in [1:n] df_vect() end
    

输出为

elapsed time: 0.009283872 seconds (16760064 bytes allocated)
elapsed time: 0.003116157 seconds (8456064 bytes allocated)
elapsed time: 0.050070483 seconds (37248064 bytes allocated, 44.50% gc time)
elapsed time: 0.0566218 seconds (30432064 bytes allocated, 40.35% gc time)