Dense 层之间的展平操作

Flatten operation between Dense layers

在Keras实现中,我曾经看到最后两个全连接层定义如下

outX = Dense(300, activation='relu')(outX)
outX = Flatten()(outX)
predictions = Dense(1,activation='linear')(outX)

在两个Dense层之间,有一个Flatten层,为什么要在两个全连接层之间加一个Flatten操作。总是需要这样做吗?

简短回答: Flatten 层没有任何参数来学习自身。但是在模型中加入Flatten层可以增加模型的学习参数。

示例: 尝试找出这两个模型之间的区别:

1) 没有 Flatten:

inp = Input(shape=(20,10,))
A = Dense(300, activation='relu')(inp)
#A = Flatten()(A) 
A = Dense(1, activation='relu')(A)
m = Model(inputs=inp,outputs=A)
m.summary()

输出:

input_9 (InputLayer)         (None, 20, 10)            0         
dense_20 (Dense)             (None, 20, 300)           3300      
dense_21 (Dense)             (None, 20, 1)             301       

Total params: 3,601
Trainable params: 3,601
Non-trainable params: 0

2) 与 Flatten:

inp = Input(shape=(20,10,))
A = Dense(300, activation='relu')(inp)
A = Flatten()(A) 
A = Dense(1, activation='relu')(A)
m = Model(inputs=inp,outputs=A)
m.summary()

输出:

input_10 (InputLayer)        (None, 20, 10)            0 
dense_22 (Dense)             (None, 20, 300)           3300      
flatten_9 (Flatten)          (None, 6000)              0         
dense_23 (Dense)             (None, 1)                 6001      

Total params: 9,301
Trainable params: 9,301
Non-trainable params: 0

最后,加不加Flatten层取决于手头的数据。有更多的参数要学习可能会导致更准确的模型或可能导致过度拟合。所以,一个答案应该是:"apply both, choose best"