R将整洁的分层数据框转换为分层列表

R convert tidy hierarchical data frame to hierarchical list

正在转换这个

g1    g2    desc    val
A     a     1       v1
A     a     2       v2
A     b     3       v3

收件人:

desc    val
A
a
1       v1
2       v2
b
3       v3

我使用 for 循环将具有两个分组级别的分层数据框转换为结构化列表。这会在列表中显示带有关联变量的描述,并按顺序散布在组级别中。

目的是将分层数据呈现为列表,以便可以使用 openxlsx 以格式打印以区分不同的分组级别。

是否有更有效的基础 R、tidyverse 或其他方法来实现此目的?

For循环代码

tib <-  tibble(g1 = c("A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "C"),
          g2 = c("a", "a", "b", "b", "b", "c", "d", "d", "b", "b", "e", "e"),
          desc = 1:12,
          val = paste0("v", 1:12))

# Number of rows in final table
n_rows <- length(unique(tib$g1)) + length(unique(paste0(tib$g1, tib$g2))) + nrow(tib)

# create empty output tibble
output <- 
    as_tibble(matrix(nrow = n_rows, ncol = 2)) %>% 
    rename(desc = V1, val = V2) %>% 
    mutate(desc = NA_character_,
           val = NA_real_)

# loop counters
level_1 <- 0
level_2 <- 0
output_row <- 1

for(i in seq_len(nrow(tib))){

  # level 1 headings
  if(tib$g1[[i]] != level_1) {
    output$desc[[output_row]] <- tib$g1[[i]]
    output_row <- output_row + 1
    }

  # level 2 headings
  if(paste0(tib$g1[[i]], tib$g2[[i]]) != paste0(level_1, level_2)) {
    output$desc[[output_row]] <- tib$g2[[i]]
    output_row <- output_row + 1
  }

  level_1 <- tib$g1[[i]]
  level_2 <- tib$g2[[i]]

  # Description and data
  output$desc[[output_row]] <- tib$desc[[i]]
  output$val[[output_row]] <- tib$val[[i]]
  output_row <- output_row + 1

}

我相信您可以像这样简化和稍微优化您的代码:

library(dplyr)
library(tidyr)
library(microbenchmark)

microbenchmark(
  old = {

    tib <-  tibble(g1 = c("A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "C"),
                   g2 = c("a", "a", "b", "b", "b", "c", "d", "d", "b", "b", "e", "e"),
                   desc = 1:12,
                   val = paste0("v", 1:12))

    # Number of rows in final table
    n_rows <- length(unique(tib$g1)) + length(unique(paste0(tib$g1, tib$g2))) + nrow(tib)

    # create empty output tibble
    output <- 
      as_tibble(matrix(nrow = n_rows, ncol = 2)) %>% 
      rename(desc = V1, val = V2) %>% 
      mutate(desc = NA_character_,
             val = NA_real_)

    # loop counters
    level_1 <- 0
    level_2 <- 0
    output_row <- 1

    for(i in seq_len(nrow(tib))){

      # level 1 headings
      if(tib$g1[[i]] != level_1) {
        output$desc[[output_row]] <- tib$g1[[i]]
        output_row <- output_row + 1
      }

      # level 2 headings
      if(paste0(tib$g1[[i]], tib$g2[[i]]) != paste0(level_1, level_2)) {
        output$desc[[output_row]] <- tib$g2[[i]]
        output_row <- output_row + 1
      }

      level_1 <- tib$g1[[i]]
      level_2 <- tib$g2[[i]]

      # Description and data
      output$desc[[output_row]] <- tib$desc[[i]]
      output$val[[output_row]] <- tib$val[[i]]
      output_row <- output_row + 1

    }

  }
  ,
  new_simple = {

    tib <-  tibble(g1 = c("A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "C"),
                   g2 = c("a", "a", "b", "b", "b", "c", "d", "d", "b", "b", "e", "e"),
                   desc = 1:12,
                   val = paste0("v", 1:12)) %>%
      unite('g1g2', g1, g2, remove = F)

    tib_list <- split(tib, tib$g1g2)

    convert_group <- function(sub_df){
      tibble(
        desc = c(sub_df$g1[1], sub_df$g2[2], sub_df$desc)
        , val = c(NA, NA, sub_df$val)
      )
    }

    res_df <- bind_rows(lapply(tib_list, convert_group))
  }
  ,
  new_fast = {

    tib <-  tibble(g1 = c("A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "C"),
                   g2 = c("a", "a", "b", "b", "b", "c", "d", "d", "b", "b", "e", "e"),
                   desc = 1:12,
                   val = paste0("v", 1:12)) %>%
      unite('g1g2', g1, g2, remove = F)

    tib_list <- split(tib, tib$g1g2)

    convert_desc <- function(sub_df){ 
      c(sub_df$g1[1], sub_df$g2[2], sub_df$desc)
    }

    convert_val <- function(sub_df){ c(NA, NA, sub_df$val) }

    res_df <- tibble(
      desc = sapply(tib_list, convert_desc)
      , val = sapply(tib_list, convert_val)
    )
  }
)

这给了我以下输出:

Unit: milliseconds
       expr      min       lq     mean   median       uq       max neval
        old 41.06535 43.52606 49.42744 47.29305 52.74399  76.98021   100
 new_simple 57.08038 60.65657 68.11021 63.38157 71.62398 112.24893   100
   new_fast 24.16624 26.30785 31.07178 28.38764 31.91647 148.06442   100

使用 tidyverse 中的一些软件包,我们可以:

library(tidyverse)

# or explicitly load what you need
library(purrr)
library(dplyr)
library(tidyr)
library(stringr)

transpose(df) %>% 
  unlist() %>% 
  stack() %>% 
  distinct(values, ind) %>% 
  mutate(detect_var = str_detect(values, "^v"),
         ind = lead(case_when(detect_var == TRUE ~ values)),
         values = case_when(detect_var == TRUE ~ NA_character_,
                            TRUE ~ values)) %>% 
  drop_na(values) %>% 
  select(values, ind) %>% 
  replace_na(list(ind = ""))

Returns:

  values ind
1      A    
2      a    
3      1  v1
5      2  v2
7      b    
8      3  v3

使用 tib 数据集,我的解决方案似乎比 Plamen 的解决方案慢一点:

Unit: milliseconds
       expr       min        lq      mean    median        uq        max neval
        old 17.658398 18.492957 21.292965 19.396304 21.770249 133.215223   100
 new_simple  6.742158  7.013732  7.638155  7.190095  7.759104  12.640237   100
   new_fast  4.064907  4.266243  4.837131  4.507865  4.871533   9.442904   100
  tidyverse  4.980664  5.326694  6.004602  5.552611  6.215129   9.923524   100