在 SEPARATE LINES 图上添加回归线方程和 R2
Adding Regression Line Equation and R2 on SEPARATE LINES graph
几年前,一位发帖者询问如何在下面link的ggplot图上添加回归线方程和R2。
Adding Regression Line Equation and R2 on graph
最佳解决方案是这样的:
lm_eqn <- function(df){
m <- lm(y ~ x, df);
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,
list(a = format(coef(m)[1], digits = 2),
b = format(coef(m)[2], digits = 2),
r2 = format(summary(m)$r.squared, digits = 3)))
as.character(as.expression(eq));
}
p1 <- p + geom_text(x = 25, y = 300, label = lm_eqn(df), parse = TRUE)
我正在使用这段代码,效果很好。但是,我想知道是否有可能使这段代码在不同的行上具有 R2 值和回归线方程,而不是用逗号分隔。
而不是像这样
像这样
在此先感谢您的帮助!
编辑:
除了插入方程外,我还修正了截距值的符号。通过将 RNG 设置为 set.seed(2L)
将给出正截距。下面的例子产生负截距。
我还修复了 geom_text
中的重叠文本
set.seed(3L)
library(ggplot2)
df <- data.frame(x = c(1:100))
df$y <- 2 + 3 * df$x + rnorm(100, sd = 40)
lm_eqn <- function(df){
# browser()
m <- lm(y ~ x, df)
a <- coef(m)[1]
a <- ifelse(sign(a) >= 0,
paste0(" + ", format(a, digits = 4)),
paste0(" - ", format(-a, digits = 4)) )
eq1 <- substitute( paste( italic(y) == b, italic(x), a ),
list(a = a,
b = format(coef(m)[2], digits = 4)))
eq2 <- substitute( paste( italic(R)^2 == r2 ),
list(r2 = format(summary(m)$r.squared, digits = 3)))
c( as.character(as.expression(eq1)), as.character(as.expression(eq2)))
}
labels <- lm_eqn(df)
p <- ggplot(data = df, aes(x = x, y = y)) +
geom_smooth(method = "lm", se=FALSE, color="red", formula = y ~ x) +
geom_point() +
geom_text(x = 75, y = 90, label = labels[1], parse = TRUE, check_overlap = TRUE ) +
geom_text(x = 75, y = 70, label = labels[2], parse = TRUE, check_overlap = TRUE )
print(p)
ggpmisc
包有 stat_poly_eq
函数,它是专门为这个任务构建的(但不限于线性回归)。使用与@Sathish 发布的相同 data
,我们可以分别添加等式和 R2,但给出 label.y.npc
不同的值。 label.x.npc
可根据需要进行调整。
library(ggplot2)
library(ggpmisc)
#> For news about 'ggpmisc', please, see https://www.r4photobiology.info/
set.seed(21318)
df <- data.frame(x = c(1:100))
df$y <- 2 + 3*df$x + rnorm(100, sd = 40)
formula1 <- y ~ x
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, formula = formula1) +
stat_poly_eq(aes(label = paste(..eq.label.., sep = "~~~")),
label.x.npc = "right", label.y.npc = 0.15,
eq.with.lhs = "italic(hat(y))~`=`~",
eq.x.rhs = "~italic(x)",
formula = formula1, parse = TRUE, size = 5) +
stat_poly_eq(aes(label = paste(..rr.label.., sep = "~~~")),
label.x.npc = "right", label.y.npc = "bottom",
formula = formula1, parse = TRUE, size = 5) +
theme_bw(base_size = 16)
# using `atop`
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, formula = formula1) +
stat_poly_eq(aes(label = paste0("atop(", ..eq.label.., ",", ..rr.label.., ")")),
formula = formula1,
parse = TRUE) +
theme_bw(base_size = 16)
### bonus: including result table
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, formula = formula1) +
stat_fit_tb(method = "lm",
method.args = list(formula = formula1),
tb.vars = c(Parameter = "term",
Estimate = "estimate",
"s.e." = "std.error",
"italic(t)" = "statistic",
"italic(P)" = "p.value"),
label.y = "bottom", label.x = "right",
parse = TRUE) +
stat_poly_eq(aes(label = paste0("atop(", ..eq.label.., ",", ..rr.label.., ")")),
formula = formula1,
parse = TRUE) +
theme_bw(base_size = 16)
由 reprex package (v0.3.0) 创建
几年前,一位发帖者询问如何在下面link的ggplot图上添加回归线方程和R2。
Adding Regression Line Equation and R2 on graph
最佳解决方案是这样的:
lm_eqn <- function(df){
m <- lm(y ~ x, df);
eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(r)^2~"="~r2,
list(a = format(coef(m)[1], digits = 2),
b = format(coef(m)[2], digits = 2),
r2 = format(summary(m)$r.squared, digits = 3)))
as.character(as.expression(eq));
}
p1 <- p + geom_text(x = 25, y = 300, label = lm_eqn(df), parse = TRUE)
我正在使用这段代码,效果很好。但是,我想知道是否有可能使这段代码在不同的行上具有 R2 值和回归线方程,而不是用逗号分隔。
而不是像这样
像这样
在此先感谢您的帮助!
编辑:
除了插入方程外,我还修正了截距值的符号。通过将 RNG 设置为 set.seed(2L)
将给出正截距。下面的例子产生负截距。
我还修复了 geom_text
set.seed(3L)
library(ggplot2)
df <- data.frame(x = c(1:100))
df$y <- 2 + 3 * df$x + rnorm(100, sd = 40)
lm_eqn <- function(df){
# browser()
m <- lm(y ~ x, df)
a <- coef(m)[1]
a <- ifelse(sign(a) >= 0,
paste0(" + ", format(a, digits = 4)),
paste0(" - ", format(-a, digits = 4)) )
eq1 <- substitute( paste( italic(y) == b, italic(x), a ),
list(a = a,
b = format(coef(m)[2], digits = 4)))
eq2 <- substitute( paste( italic(R)^2 == r2 ),
list(r2 = format(summary(m)$r.squared, digits = 3)))
c( as.character(as.expression(eq1)), as.character(as.expression(eq2)))
}
labels <- lm_eqn(df)
p <- ggplot(data = df, aes(x = x, y = y)) +
geom_smooth(method = "lm", se=FALSE, color="red", formula = y ~ x) +
geom_point() +
geom_text(x = 75, y = 90, label = labels[1], parse = TRUE, check_overlap = TRUE ) +
geom_text(x = 75, y = 70, label = labels[2], parse = TRUE, check_overlap = TRUE )
print(p)
ggpmisc
包有 stat_poly_eq
函数,它是专门为这个任务构建的(但不限于线性回归)。使用与@Sathish 发布的相同 data
,我们可以分别添加等式和 R2,但给出 label.y.npc
不同的值。 label.x.npc
可根据需要进行调整。
library(ggplot2)
library(ggpmisc)
#> For news about 'ggpmisc', please, see https://www.r4photobiology.info/
set.seed(21318)
df <- data.frame(x = c(1:100))
df$y <- 2 + 3*df$x + rnorm(100, sd = 40)
formula1 <- y ~ x
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, formula = formula1) +
stat_poly_eq(aes(label = paste(..eq.label.., sep = "~~~")),
label.x.npc = "right", label.y.npc = 0.15,
eq.with.lhs = "italic(hat(y))~`=`~",
eq.x.rhs = "~italic(x)",
formula = formula1, parse = TRUE, size = 5) +
stat_poly_eq(aes(label = paste(..rr.label.., sep = "~~~")),
label.x.npc = "right", label.y.npc = "bottom",
formula = formula1, parse = TRUE, size = 5) +
theme_bw(base_size = 16)
# using `atop`
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, formula = formula1) +
stat_poly_eq(aes(label = paste0("atop(", ..eq.label.., ",", ..rr.label.., ")")),
formula = formula1,
parse = TRUE) +
theme_bw(base_size = 16)
### bonus: including result table
ggplot(data = df, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, formula = formula1) +
stat_fit_tb(method = "lm",
method.args = list(formula = formula1),
tb.vars = c(Parameter = "term",
Estimate = "estimate",
"s.e." = "std.error",
"italic(t)" = "statistic",
"italic(P)" = "p.value"),
label.y = "bottom", label.x = "right",
parse = TRUE) +
stat_poly_eq(aes(label = paste0("atop(", ..eq.label.., ",", ..rr.label.., ")")),
formula = formula1,
parse = TRUE) +
theme_bw(base_size = 16)
由 reprex package (v0.3.0) 创建