使用 MATLAB 求解具有不同阶段的生物反应器的同时二阶 ODE

Solve for simultaneous second order ODE for bioreactor with different stages using MATLAB

我正在尝试求解联立二阶微分方程,以找出生物反应器不同阶段示踪剂(分子)的浓度。舞台是串联的

上下文: 我们正在使用的生物反应器是一个旋转生物承包商。这是一个 example. 示踪分子在时间 t=0 的第一阶段注入,我们的 objective 是找出示踪分子的浓度在每个阶段如何随时间变化。

我们正在处理的二阶 ODE 可以在这里找到:https://imgur.com/a/KS4Od

我尝试简化 4 个阶段的方程(imgur 相册中的第 2 和第 3 张图片),并尝试使用 MATLAB 求解。这是它的代码:

 P2 = 1; P3 = 5; C0 = 30; P4 = 2;

f = @(t,x)[x(2); (C0+P4*x(7)-x(1)-P3*x(2))/P2;
          x(4); (x(1)-x(3)-P3*x(4))/P2;
          x(6); (x(3)-x(5)-P3*x(6))/P2;
          x(8); (x(5)-x(7)-P3*x(8))/P2];

t= linspace(0,40); init = [0 0 0 0 0 0 0 0];

[t Y] = ode45(f,t,init);

plot(t,Y(:,1),'r-',t,Y(:,3),'b-',t,Y(:,5),'k-',t,Y(:,7),'m-')

legend('C1','C2','C3','C4')

我们的目的是了解第 4 阶段的浓度变化情况。它应该看起来像这样 Residence time distribution 或类似的东西。

我需要知道是否可以将 "for loop" 用于串联的 "n" 个阶段并求解方程。理想情况下,only inputs 应该是 no。阶段、时间间隔、初始浓度和常数。假设常数的任何值,初始浓度。和时间间隔。

有人可以指导我解决这个问题吗?非常感谢您的帮助。

不要使用 f 的 anonymous/lambda 定义,而是使用允许您使用循环的更传统的函数。

n = 4
function dotx = f(t,x)
    dotx = zeros(2*n,1)
    dotx(1) = x(2);
    dotx(2) = (C0+P4*x(7)-x(1)-P3*x(2))/P2
    for k = 2:n
        dotx(2*k-1) = x(2*k)
        dotx(2*k) = (x(2*k-3)-x(2*k-1)-P3*x(2*k))/P2
    end
end

init = zeros(2*n,1)

可能需要为 x, dotx 更改 row/column 格式。