数据框的 Return 回归 p 值和 t.test p 值

Return regression p-value and t.test p-value of a data frame

我正在尝试编写一个接受数据框的函数。数据框的 df$x 列由两个因子水平组成。 df$y是连续随机变量。这是我目前所拥有的:

compare_tests = function(df) {
    p5Model = lm(y ~ x, df)
    p5_Regression_P_Value = anova(p5Model)$'Pr(>F)'[1]
    p5_xFactorLevels = factor(df$x)
    p5_T_Test = t.test(p5_xFactorLevels[1], p5_xFactorLevels[2])
    p5_T_Test_P_Value = p5_T_Test$p.value
    p5Vector = c(regression = p5_Regression_P_Value , t.test = p5_T_Test_P_Value)
    return(p5Vector)
}

我的回归 p 值有效,但因子 t.test p 值无效。

例如, sim2 是:

# A tibble: 40 x 2
   x           y
   <chr>   <dbl>
 1 a       1.94 
 2 a       1.18 
 3 a       1.24 
 4 a       2.62 
 5 a       1.11 
 6 a       0.866
 7 a      -0.910
 8 a       0.721
 9 a       0.687
10 a       2.07 
11 b       8.07 
12 b       7.36 
13 b       7.95 
14 b       7.75 
15 b       8.44 
16 b      10.8  
17 b       8.05 
18 b       8.58 
19 b       8.12 
20 b       6.09 
21 c       6.86 
22 c       5.76 
23 c       5.79 
24 c       6.02 
25 c       6.03 
26 c       6.55 
27 c       3.73 
28 c       8.68 
29 c       5.64 
30 c       6.21 
31 d       3.07 
32 d       1.33 
33 d       3.11 
34 d       1.75 
35 d       0.822
36 d       1.02 
37 d       3.07   
38 d       2.13 
39 d       2.49 
40 d       0.301

对于那些更愿意查看 dput(sim2) 的人:

structure(list(x = c("a", "a", "a", "a", "a", "a", "a", "a", 
"a", "a", "b", "b", "b", "b", "b", "b", "b", "b", "b", "b", "c", 
"c", "c", "c", "c", "c", "c", "c", "c", "c", "d", "d", "d", "d", 
"d", "d", "d", "d", "d", "d"), y = c(1.93536318980109, 1.17648861056246, 
1.2436854647462, 2.6235488834436, 1.11203808286976, 0.866002986937445, 
-0.910087467722212, 0.720762758415155, 0.68655402174211, 2.06730787876151, 
8.07003485029664, 7.36087667611434, 7.95003510095185, 7.74851655674979, 
8.44479711579273, 10.7554175753369, 8.04653138044419, 8.57770906930663, 
8.11819487440968, 6.0882795089718, 6.86208648183857, 5.75676326036652, 
5.79391280521842, 6.01917759220915, 6.02956075431977, 6.54982754180169, 
3.72588514310706, 8.68255718355635, 5.63877874450629, 6.21335574971003, 
3.07434588225969, 1.33491175145449, 3.11395241896922, 1.75410358832085, 
0.822436691056719, 1.02414938384014, 3.06505732002715, 2.13167063477289, 
2.48862880920098, 0.300549432154306)), .Names = c("x", "y"), class = 
c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -40L))

我的函数:

 compare_tests(sim2 %>% filter(x %in% c('a', 'd')))

应该return

regression     t.test 
 0.1051552  0.1052173

您的函数的 t.test 个值有问题。
p5_xFactorLevels = factor(df$x) 行将列转换为因子(好的,但不是必需的)。然后 p5_T_Test = t.test(p5_xFactorLevels[1], p5_xFactorLevels[2]) 对 x 列的前 2 个元素错误地执行了 t-test。

测试是:y 列与 x 列:p5_T_Test = t.test(df$y ~df$x)

compare_tests = function(df) {
  p5Model = lm(y ~ x, df)
  p5_Regression_P_Value = anova(p5Model)$'Pr(>F)'[1]
  #Correct line added below:        
  p5_T_Test = t.test(df$y ~df$x)

  p5_T_Test_P_Value = p5_T_Test$p.value
  p5Vector = c(regression = p5_Regression_P_Value , t.test = p5_T_Test_P_Value)
  return(p5Vector)
}

sim2<-structure(list(x = c("a", "a", "a", "a", "a", "a", "a", "a", 
                           "a", "a", "b", "b", "b", "b", "b", "b", "b", "b", "b", "b", "c", 
                           "c", "c", "c", "c", "c", "c", "c", "c", "c", "d", "d", "d", "d", 
                           "d", "d", "d", "d", "d", "d"), y = c(1.93536318980109, 1.17648861056246, 
                                                                1.2436854647462, 2.6235488834436, 1.11203808286976, 0.866002986937445, 
                                                                -0.910087467722212, 0.720762758415155, 0.68655402174211, 2.06730787876151, 
                                                                8.07003485029664, 7.36087667611434, 7.95003510095185, 7.74851655674979, 
                                                                8.44479711579273, 10.7554175753369, 8.04653138044419, 8.57770906930663, 
                                                                8.11819487440968, 6.0882795089718, 6.86208648183857, 5.75676326036652, 
                                                                5.79391280521842, 6.01917759220915, 6.02956075431977, 6.54982754180169, 
                                                                3.72588514310706, 8.68255718355635, 5.63877874450629, 6.21335574971003, 
                                                                3.07434588225969, 1.33491175145449, 3.11395241896922, 1.75410358832085, 
                                                                0.822436691056719, 1.02414938384014, 3.06505732002715, 2.13167063477289, 
                                                                2.48862880920098, 0.300549432154306)), .Names = c("x", "y"), class = 
                  c("tbl_df", 
                    "tbl", "data.frame"), row.names = c(NA, -40L))
compare_tests(sim2 %>% filter(x %in% c('a', 'd')))