标准化 Python Pandas 数据框中的某些列?

Standardize some columns in Python Pandas dataframe?

Python下面的代码只是return我一个数组,但是我想要缩放后的数据来替换原来的数据。

from sklearn.preprocessing import StandardScaler
df = StandardScaler().fit_transform(df[['cost', 'sales']])
df

输出

array([[ 1.99987622, -0.55900276],
       [-0.49786658, -0.45658181],
       [-0.5146864 , -0.505097  ],
       [-0.48104676, -0.47814412],
       [-0.50627649,  1.9988257 ]])

原始数据

id  cost    sales   item
1   300       50    pen
2   3         88    bottle
3   1         70    drink
4   5         80    cup
5   2        999    ink

只需将其分配回去

df[['cost', 'sales']] = StandardScaler().fit_transform(df[['cost', 'sales']])
df
Out[45]: 
   id      cost     sales    item
0   1  1.999876 -0.559003     pen
1   2 -0.497867 -0.456582  bottle
2   3 -0.514686 -0.505097   drink
3   4 -0.481047 -0.478144     cup
4   5 -0.506276  1.998826     ink

或者如果使用 列索引 而不是列名:

import pandas as pd
from sklearn.preprocessing import StandardScaler
df = pd.DataFrame({"cost": [300,3,1,5,2], "sales": [50,88,70,80,999], "item": ["pen","bottle","drink","cup","ink"]})

# Scale selected columns by index
df.iloc[:, 0:2] = StandardScaler().fit_transform(df.iloc[:, 0:2])

       cost     sales    item
0  1.999876 -0.559003     pen
1 -0.497867 -0.456582  bottle
2 -0.514686 -0.505097   drink
3 -0.481047 -0.478144     cup
4 -0.506276  1.998826     ink

还可以保存 sclaer 对象以便在现有缩放器的基础上缩放“新数据”:

df = pd.DataFrame({"cost": [300,3,1,5,2], "sales": [50,88,70,80,999], "item": ["pen","bottle","drink","cup","ink"]})
df_new = pd.DataFrame({"cost": [299,5,12,64,2], "sales": [55,99,48,20,999], "item": ["pen","bottle","drink","cup","ink"]})

# Set up scaler
scaler = StandardScaler().fit(df.iloc[:, 0:2])

# Scale original data
df.iloc[:, 0:2] = scaler.transform(df.iloc[:, 0:2])

# Scale new data 
df_new.iloc[:, 0:2] = scaler.transform(df_new.iloc[:, 0:2])

如果你想拥有benefits of an sklearn Pipeline(convenience/encapsulation、关节参数选择、防泄漏安全),你可以使用ColumnTransformer:

preproc = ColumnTransformer(
    transformers=[
        ('scale', StandardScaler(), ["cost", "sales"]),
    ],
    remainder="passthrough",
)

(有几种方法可以指定哪些列进入缩放器,检查 the docs). Now you have the benefit of saving the scaler object as ,但您也不必一直重复切片:

df = preproc.fit_transform(df)
df_new = preproc.transform(df)

您可以使用 scale 来标准化特定列:

from sklearn.preprocessing import scale
cols = ['cost', 'sales']
df[cols] = scale(df[cols])

scale 减去平均值并除以每列的样本标准偏差。

例子

# Prep
import pandas as pd
import numpy as np
from sklearn.preprocessing import scale

# Sample data
df = pd.DataFrame({
    'cost':[300, 3, 1, 5, 2],
    'sales':[50, 88, 70, 80, 999],
    'item': ['pen', 'bottle', 'drink', 'cup', 'ink']
})

# Standardize columns
cols = ['cost', 'sales']
df[cols] = scale(df[cols])