高效删除 SortedSet<T> 中的第一个元素
Efficiently remove first element in SortedSet<T>
我有一个 SortedSet,我要向其中添加项目(以不受控制的顺序,显然是利用它的排序能力)。
集合中的项目始终按顺序使用和删除,一次一个。
set.Min.Process();
set.Remove(set.Min);
然而,我面临的问题是由于 Remove 方法的 O(log n) 方面以及 SortedSet 的二进制搜索性质,这导致对每个进行的比较的最大可能次数删除 (~log n).
对我来说,基于访问最小和最大项目的集合没有有效的方法来删除它们似乎很奇怪。
实际上我追求的是 set.RemoveMin() 方法,利用更优化的方法(无比较)获取第一个元素。
有什么办法吗?
有没有我可以利用的现有替代 SortedSet 实现?
[编辑] 我对此进行了检测,它似乎并不比仅使用 SortedSet
快,所以这可能不是一个好的答案!
@randomman159 - 如果您尝试后没有帮助,请评论此答案,我将删除它。
您描述的是Priority Queue。
这是使用堆的基本实现。
Enqueue()
和 Dequeue()
的复杂度都是 O(LogN):
/// <summary>Priority Queue data structure.</summary>
/// <remarks>
/// Implemented in traditional fashion, using a heap.
/// Based on code from http://www.vcskicks.com/priority-queue.php
///
/// Also see http://en.wikipedia.org/wiki/Heap_(data_structure)
/// and http://en.wikipedia.org/wiki/Priority_queue
/// </remarks>
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Naming", "CA1711:IdentifiersShouldNotHaveIncorrectSuffix")]
public sealed class PriorityQueue<T>
{
/// <summary>Constructor.</summary>
/// <param name="comparer">A comparison function for items of type T>.</param>
public PriorityQueue(Comparison<T> comparer)
{
_comparer = comparer;
_heap = new List<T> {default(T)};
}
/// <summary>The number of items in the queue.</summary>
public int Count => _heap.Count - 1;
/// <summary>
/// Returns the value at the head of the Priority Queue without removing it.
/// Throws an exception if the queue is empty.
/// </summary>
public T Peek()
{
if (this.Count > 0)
{
return _heap[1]; // Head of the queue is at [1], not [0].
}
else
{
throw new InvalidOperationException("Attempt to Peek() into an empty PriorityQueue<T>");
}
}
/// <summary>Adds a value to the Priority Queue</summary>
public void Enqueue(T value)
{
_heap.Add(value);
this.bubbleUp(_heap.Count - 1); // Bubble up to preserve the heap property, starting at the inserted value.
}
/// <summary>Returns the front of the Priority Queue.</summary>
public T Dequeue()
{
if (this.Count > 0)
{
T minValue = this._heap[1]; // The smallest value in the Priority Queue is the first item in the array
if (this._heap.Count > 2) // If there's more than one item, replace the first item in the array with the last one.
{
T lastValue = this._heap[_heap.Count - 1];
this._heap.RemoveAt(_heap.Count - 1); // Move last node to the head
this._heap[1] = lastValue;
this.bubbleDown(1);
}
else // Only one item in the queue.
{
_heap.RemoveAt(1); // Remove the only value stored in the queue.
}
return minValue;
}
else
{
throw new InvalidOperationException("Attempt to Dequeue() from an empty PriorityQueue<T>");
}
}
/// <summary>Restores the heap-order property between child and parent values going up towards the head.</summary>
private void bubbleUp(int startCell)
{
// Requires(startCell >= 0);
// Requires(startCell < _heap.Count);
int cell = startCell;
while (this.isParentBigger(cell)) // Bubble up as long as the parent is greater.
{
// Get values of parent and child.
T parentValue = this._heap[cell/2];
T childValue = this._heap[cell];
// Swap the values.
this._heap[cell/2] = childValue;
this._heap[cell] = parentValue;
cell /= 2; // Go up parents.
}
}
/// <summary>Restores the heap-order property between child and parent values going down towards the bottom.</summary>
private void bubbleDown(int startCell)
{
// Requires(startCell > 0);
// Requires(startCell < _heap.Count);
int cell = startCell;
// Bubble down as long as either child is smaller.
while (this.isLeftChildSmaller(cell) || this.isRightChildSmaller(cell))
{
int child = this.compareChild(cell);
if (child == -1) // Left Child.
{
// Swap values.
T parentValue = _heap[cell];
T leftChildValue = _heap[2*cell];
_heap[cell] = leftChildValue;
_heap[2*cell] = parentValue;
cell = 2*cell; // Move down to left child.
}
else if (child == 1) // Right Child.
{
// Swap values.
T parentValue = _heap[cell];
T rightChildValue = _heap[2*cell+1];
_heap[cell] = rightChildValue;
_heap[2*cell+1] = parentValue;
cell = 2*cell+1; // Move down to right child.
}
}
}
/// <summary>Is the value of a parent greater than its child?</summary>
private bool isParentBigger(int childCell)
{
// Requires(childCell >= 0);
// Requires(childCell < _heap.Count);
if (childCell == 1)
{
return false; // Top of heap, no parent.
}
else
{
return _comparer(_heap[childCell/2], _heap[childCell]) > 0;
}
}
/// <summary>
/// Returns whether the left child cell is smaller than the parent cell.
/// Returns false if a left child does not exist.
/// </summary>
private bool isLeftChildSmaller(int parentCell)
{
// Requires(parentCell >= 0);
// Requires(parentCell < _heap.Count);
if (2*parentCell >= _heap.Count)
{
return false; // Out of bounds.
}
else
{
return _comparer(_heap[2*parentCell], _heap[parentCell]) < 0;
}
}
/// <summary>
/// Returns whether the right child cell is smaller than the parent cell.
/// Returns false if a right child does not exist.
/// </summary>
private bool isRightChildSmaller(int parentCell)
{
// Requires(parentCell >= 0);
// Requires(parentCell < _heap.Count);
if (2 * parentCell + 1 >= _heap.Count)
{
return false; // Out of bounds.
}
else
{
return _comparer(_heap[2*parentCell+1], _heap[parentCell]) < 0;
}
}
/// <summary>
/// Compares the children cells of a parent cell. -1 indicates the left child is the smaller of the two,
/// 1 indicates the right child is the smaller of the two, 0 inidicates that neither child is smaller than the parent.
/// </summary>
private int compareChild(int parentCell)
{
// Requires(parentCell >= 0);
// Requires(parentCell < _heap.Count);
bool leftChildSmaller = this.isLeftChildSmaller(parentCell);
bool rightChildSmaller = this.isRightChildSmaller(parentCell);
if (leftChildSmaller || rightChildSmaller)
{
if (leftChildSmaller && rightChildSmaller)
{
// Figure out which of the two is smaller.
int leftChild = 2 * parentCell;
int rightChild = 2 * parentCell + 1;
T leftValue = this._heap[leftChild];
T rightValue = this._heap[rightChild];
// Compare the values of the children.
if (_comparer(leftValue, rightValue) <= 0)
{
return -1; // Left child is smaller.
}
else
{
return 1; // Right child is smaller.
}
}
else if (leftChildSmaller)
{
return -1; // Left child is smaller.
}
else
{
return 1; // Right child smaller.
}
}
else
{
return 0; // Both children are bigger or don't exist.
}
}
private readonly List<T> _heap;
private readonly Comparison<T> _comparer;
}
使用 Enqueue()
添加您的元素并使用 Dequeue()
删除前面的元素。
另见此处的另一种实现方式:https://visualstudiomagazine.com/Articles/2012/11/01/Priority-Queues-with-C.aspx?Page=1
我有一个 SortedSet,我要向其中添加项目(以不受控制的顺序,显然是利用它的排序能力)。
集合中的项目始终按顺序使用和删除,一次一个。
set.Min.Process();
set.Remove(set.Min);
然而,我面临的问题是由于 Remove 方法的 O(log n) 方面以及 SortedSet 的二进制搜索性质,这导致对每个进行的比较的最大可能次数删除 (~log n).
对我来说,基于访问最小和最大项目的集合没有有效的方法来删除它们似乎很奇怪。
实际上我追求的是 set.RemoveMin() 方法,利用更优化的方法(无比较)获取第一个元素。
有什么办法吗? 有没有我可以利用的现有替代 SortedSet 实现?
[编辑] 我对此进行了检测,它似乎并不比仅使用 SortedSet
快,所以这可能不是一个好的答案!
@randomman159 - 如果您尝试后没有帮助,请评论此答案,我将删除它。
您描述的是Priority Queue。
这是使用堆的基本实现。
Enqueue()
和 Dequeue()
的复杂度都是 O(LogN):
/// <summary>Priority Queue data structure.</summary>
/// <remarks>
/// Implemented in traditional fashion, using a heap.
/// Based on code from http://www.vcskicks.com/priority-queue.php
///
/// Also see http://en.wikipedia.org/wiki/Heap_(data_structure)
/// and http://en.wikipedia.org/wiki/Priority_queue
/// </remarks>
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Naming", "CA1711:IdentifiersShouldNotHaveIncorrectSuffix")]
public sealed class PriorityQueue<T>
{
/// <summary>Constructor.</summary>
/// <param name="comparer">A comparison function for items of type T>.</param>
public PriorityQueue(Comparison<T> comparer)
{
_comparer = comparer;
_heap = new List<T> {default(T)};
}
/// <summary>The number of items in the queue.</summary>
public int Count => _heap.Count - 1;
/// <summary>
/// Returns the value at the head of the Priority Queue without removing it.
/// Throws an exception if the queue is empty.
/// </summary>
public T Peek()
{
if (this.Count > 0)
{
return _heap[1]; // Head of the queue is at [1], not [0].
}
else
{
throw new InvalidOperationException("Attempt to Peek() into an empty PriorityQueue<T>");
}
}
/// <summary>Adds a value to the Priority Queue</summary>
public void Enqueue(T value)
{
_heap.Add(value);
this.bubbleUp(_heap.Count - 1); // Bubble up to preserve the heap property, starting at the inserted value.
}
/// <summary>Returns the front of the Priority Queue.</summary>
public T Dequeue()
{
if (this.Count > 0)
{
T minValue = this._heap[1]; // The smallest value in the Priority Queue is the first item in the array
if (this._heap.Count > 2) // If there's more than one item, replace the first item in the array with the last one.
{
T lastValue = this._heap[_heap.Count - 1];
this._heap.RemoveAt(_heap.Count - 1); // Move last node to the head
this._heap[1] = lastValue;
this.bubbleDown(1);
}
else // Only one item in the queue.
{
_heap.RemoveAt(1); // Remove the only value stored in the queue.
}
return minValue;
}
else
{
throw new InvalidOperationException("Attempt to Dequeue() from an empty PriorityQueue<T>");
}
}
/// <summary>Restores the heap-order property between child and parent values going up towards the head.</summary>
private void bubbleUp(int startCell)
{
// Requires(startCell >= 0);
// Requires(startCell < _heap.Count);
int cell = startCell;
while (this.isParentBigger(cell)) // Bubble up as long as the parent is greater.
{
// Get values of parent and child.
T parentValue = this._heap[cell/2];
T childValue = this._heap[cell];
// Swap the values.
this._heap[cell/2] = childValue;
this._heap[cell] = parentValue;
cell /= 2; // Go up parents.
}
}
/// <summary>Restores the heap-order property between child and parent values going down towards the bottom.</summary>
private void bubbleDown(int startCell)
{
// Requires(startCell > 0);
// Requires(startCell < _heap.Count);
int cell = startCell;
// Bubble down as long as either child is smaller.
while (this.isLeftChildSmaller(cell) || this.isRightChildSmaller(cell))
{
int child = this.compareChild(cell);
if (child == -1) // Left Child.
{
// Swap values.
T parentValue = _heap[cell];
T leftChildValue = _heap[2*cell];
_heap[cell] = leftChildValue;
_heap[2*cell] = parentValue;
cell = 2*cell; // Move down to left child.
}
else if (child == 1) // Right Child.
{
// Swap values.
T parentValue = _heap[cell];
T rightChildValue = _heap[2*cell+1];
_heap[cell] = rightChildValue;
_heap[2*cell+1] = parentValue;
cell = 2*cell+1; // Move down to right child.
}
}
}
/// <summary>Is the value of a parent greater than its child?</summary>
private bool isParentBigger(int childCell)
{
// Requires(childCell >= 0);
// Requires(childCell < _heap.Count);
if (childCell == 1)
{
return false; // Top of heap, no parent.
}
else
{
return _comparer(_heap[childCell/2], _heap[childCell]) > 0;
}
}
/// <summary>
/// Returns whether the left child cell is smaller than the parent cell.
/// Returns false if a left child does not exist.
/// </summary>
private bool isLeftChildSmaller(int parentCell)
{
// Requires(parentCell >= 0);
// Requires(parentCell < _heap.Count);
if (2*parentCell >= _heap.Count)
{
return false; // Out of bounds.
}
else
{
return _comparer(_heap[2*parentCell], _heap[parentCell]) < 0;
}
}
/// <summary>
/// Returns whether the right child cell is smaller than the parent cell.
/// Returns false if a right child does not exist.
/// </summary>
private bool isRightChildSmaller(int parentCell)
{
// Requires(parentCell >= 0);
// Requires(parentCell < _heap.Count);
if (2 * parentCell + 1 >= _heap.Count)
{
return false; // Out of bounds.
}
else
{
return _comparer(_heap[2*parentCell+1], _heap[parentCell]) < 0;
}
}
/// <summary>
/// Compares the children cells of a parent cell. -1 indicates the left child is the smaller of the two,
/// 1 indicates the right child is the smaller of the two, 0 inidicates that neither child is smaller than the parent.
/// </summary>
private int compareChild(int parentCell)
{
// Requires(parentCell >= 0);
// Requires(parentCell < _heap.Count);
bool leftChildSmaller = this.isLeftChildSmaller(parentCell);
bool rightChildSmaller = this.isRightChildSmaller(parentCell);
if (leftChildSmaller || rightChildSmaller)
{
if (leftChildSmaller && rightChildSmaller)
{
// Figure out which of the two is smaller.
int leftChild = 2 * parentCell;
int rightChild = 2 * parentCell + 1;
T leftValue = this._heap[leftChild];
T rightValue = this._heap[rightChild];
// Compare the values of the children.
if (_comparer(leftValue, rightValue) <= 0)
{
return -1; // Left child is smaller.
}
else
{
return 1; // Right child is smaller.
}
}
else if (leftChildSmaller)
{
return -1; // Left child is smaller.
}
else
{
return 1; // Right child smaller.
}
}
else
{
return 0; // Both children are bigger or don't exist.
}
}
private readonly List<T> _heap;
private readonly Comparison<T> _comparer;
}
使用 Enqueue()
添加您的元素并使用 Dequeue()
删除前面的元素。
另见此处的另一种实现方式:https://visualstudiomagazine.com/Articles/2012/11/01/Priority-Queues-with-C.aspx?Page=1