PyTorch - 使用 LSTM 的 WSD

PyTorch - WSD using LSTM

我正在尝试使用 PyTorch 的神经模型在 WSD 上复制 Google's research paper

在对大型数据集进行训练之前,我遇到了一些关于过度拟合模型的问题。

使用这个训练集:

The film was also intended to be the first in a trilogy.

此模型定义:

class WordGuesser(nn.Module):
    def __init__(self, hidden_dim, context_dim, embedding_dim, vocabulary_dim, batch_dim, window_dim):
        super(WordGuesser, self).__init__()
        self.hidden_dim = hidden_dim
        self.batch_dim = batch_dim
        self.window_dim = window_dim
        self.word_embeddings = nn.Embedding(vocabulary_dim, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim)
        #self.extract_context = nn.Linear((2 * window_dim + 1) * hidden_dim, context_dim)
        self.extract_context = nn.Linear(hidden_dim, context_dim)
        self.predict = nn.Linear(context_dim, vocabulary_dim)
        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (autograd.Variable(torch.zeros(1, self.batch_dim, self.hidden_dim).cuda()),
                autograd.Variable(torch.zeros(1, self.batch_dim, self.hidden_dim).cuda()))

    def forward(self, sentence, hidden):
        embeddings = self.word_embeddings(sentence)
        out, self.hidden = self.lstm(embeddings.permute(1, 0, 2), hidden)
        lstm_out = out[-1]
        context = self.extract_context(lstm_out)
        prediction = self.predict(context)
        return prediction, context

和这个训练程序:

num_epoch = 100
hidden_units = 512
embedding_dim = 256
context_dim = 256

def mytrain():
    lines = open('training/overfit.txt').readlines()
    sentences = data.split_to_sentences(lines) #uses spaCy to detect sentences from each line
    word2idx=dict() #dictionary is built from the training set
    idx2word =dict()
    i = 0
    for s in sentences:
        for t in s.split(' '):
            if t in word2idx:
                continue
            word2idx[t] = i
            idx2word[i] = t
            i += 1
    word2idx['$'] = i #the token to guess the missing word in a sentence
    idx2word[i] = '$'
    X = list()
    Y = list()
    for sentence in sentences:
        sentence = sentence.split(' ')
        for i in range(len(sentence)):
            newsentence = list(sentence)
            newsentence[i] = '$'
            if not sentence[i] in word2idx:
                continue
            indices = [word2idx[w] for w in newsentence]
            label = word2idx[sentence[i]]
            X.append(indices)
            Y.append(label)
    model = WordGuesser(hidden_units, context_dim, embedding_dim, len(word2idx), len(X), len(X[0]))
    model.train()
    model.cuda()
    input = torch.LongTensor(X).cuda()
    output = torch.LongTensor(Y).cuda()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.01)
    model.hidden = model.init_hidden()
    for epoch in range(num_epoch):
        model.hidden = model.init_hidden()
        model.zero_grad()
        input_tensor = autograd.Variable(input)
        target_tensor = autograd.Variable(output)

        predictions, context = model(input_tensor, model.hidden)
        for i, prediction in enumerate(predictions):
            sorted_val = sorted(enumerate(np.array(prediction.data)), key=lambda x : x[1], reverse=True)
            print([(idx2word[x[0]], x[1]) for x in sorted_val[:5]], idx2word[Y[i]])
        loss = criterion(predictions, target_tensor)
        loss.backward()
        optimizer.step()

        print(epoch, loss.data[0])

    torch.save(model, "train2.pt")

在训练过程中,模型似乎能够在第 21 个时期之后过度拟合,正如您从以下分数中看到的那样(预测中的前 5 个词和一行中的最后一个词是该词的标签句子):

[('The', 11.362326), ('film', 11.356865), ('also', 7.5573149), ('to', 5.3518314), ('intended', 4.3520432)] The

[('film', 11.073805), ('The', 10.451499), ('also', 7.5498624), ('was', 4.9684553), ('be', 4.0730805)] film

[('was', 11.232123), ('also', 9.9741745), ('the', 6.0156212), ('be', 4.9949703), ('The', 4.5516477)] was

[('also', 9.6998224), ('was', 9.6202812), ('The', 6.345758), ('film', 4.9122157), ('be', 2.6727715)] also

[('intended', 18.344809), ('to', 16.410078), ('film', 10.147289), ('The', 9.8423424), ('$', 9.6181822)] intended

[('to', 12.442947), ('intended', 10.900065), ('film', 8.2598763), ('The', 8.0493736), ('$', 4.4901967)] to

[('be', 12.189278), ('also', 7.7172523), ('was', 7.5415096), ('the', 5.2521734), ('The', 4.1723843)] be

[('the', 15.59604), ('be', 9.3750105), ('first', 8.9820032), ('was', 8.6859236), ('also', 5.0665498)] the

[('first', 10.191225), ('the', 5.1829329), ('in', 3.6020348), ('be', 3.4108081), ('a', 1.5569853)] first

[('in', 14.731103), ('first', 9.3131113), ('a', 5.982264), ('trilogy', 4.2928643), ('be', 0.49548936)] in

[('a', 14.357709), ('in', 8.3088198), ('trilogy', 6.3918238), ('first', 6.2178354), ('intended', 0.95656234)] a

[('trilogy', 14.351434), ('a', 4.5073452), ('in', 4.2348137), ('$', 3.7552347), ('intended', 3.5101018)] trilogy

[('.', 18.152126), ('$', 12.028764), ('to', 9.6003456), ('intended', 8.1202478), ('The', 4.9225812)] .

当 运行 另一个 Python 脚本加载模型并查询以下单词时(使用相同的代码在训练期间打印分数):

The film was also intended to $ the first in a trilogy. be

The film $ also intended to be the first in a trilogy. was

$ film was also intended to be the first in a trilogy. The

我得到这些分数:

[('film', 24.066889), ('$', 20.107487), ('was', 16.855488), ('a', 12.969441), ('in', 8.1248817)] be

[('film', 24.089062), ('$', 20.116539), ('was', 16.891994), ('a', 12.982826), ('in', 8.1167336)] was

[('film', 23.993624), ('$', 20.108011), ('was', 16.891005), ('a', 12.960193), ('in', 8.1577587)] The

我也试过将 False 模式设置为 model.train() 模式,使用 model.eval() 并在 LSTM 分数上调用 topk,但结果是'令人满意,

通过 torch.save() 仅保存模型的 state_dict() 解决了这个问题,然后在评估阶段使用 model.load_state_dict().

将其加载回来

此外,我将句子查询循环包裹在另一个循环中,充当 warm-up(从 here 获取)并且在最后一次循环时,我设置 model.eval() 并打印出分数,事实证明这是正确的。