如何在 h2o GBM 模型上使用 LIME 对 Python 中的列进行特征选择
How to use LIME on h2o GBM model to do feature selection of columns in Python
尝试使用在模型预测中具有最高重要性的石灰从我的 h2o GBM 模型中获取前 3 列。
开源 h2o-3 中还没有开箱即用的解决方案,但是有很多示例可以说明如何做到这一点。这是 repos/notebooks:
https://github.com/jphall663/interpretable_machine_learning_with_python
/ https://github.com/jphall663/interpretable_machine_learning_with_python/blob/master/lime.ipynb
https://github.com/h2oai/mli-resources/
https://github.com/h2oai/mli-resources/blob/master/notebooks/lime.ipynb
https://content.oreilly.com/oriole/Interpretable-machine-learning-with-Python-XGBoost-and-H2O
/ https://content.oreilly.com/oriole/Interpretable-machine-learning-with-Python-XGBoost-and-H2O/blob/master/lime.ipynb
Marco Tulio 的原始 LIME 包也有可能会
工作:https://github.com/marcotcr/lime, be sure to look into this example: https://marcotcr.github.io/lime/tutorials/Tutorial_H2O_continuous_and_cat.html
尝试使用在模型预测中具有最高重要性的石灰从我的 h2o GBM 模型中获取前 3 列。
开源 h2o-3 中还没有开箱即用的解决方案,但是有很多示例可以说明如何做到这一点。这是 repos/notebooks:
https://github.com/jphall663/interpretable_machine_learning_with_python / https://github.com/jphall663/interpretable_machine_learning_with_python/blob/master/lime.ipynb
https://github.com/h2oai/mli-resources/ https://github.com/h2oai/mli-resources/blob/master/notebooks/lime.ipynb
https://content.oreilly.com/oriole/Interpretable-machine-learning-with-Python-XGBoost-and-H2O / https://content.oreilly.com/oriole/Interpretable-machine-learning-with-Python-XGBoost-and-H2O/blob/master/lime.ipynb
Marco Tulio 的原始 LIME 包也有可能会 工作:https://github.com/marcotcr/lime, be sure to look into this example: https://marcotcr.github.io/lime/tutorials/Tutorial_H2O_continuous_and_cat.html