如何优化 LightFM 的超参数?

How do I optimize the hyperparameters of LightFM?

我在我的数据集上使用 LightFM 推荐库,它给出了下图中的结果。

NUM_THREADS = 4
NUM_COMPONENTS = 30
NUM_EPOCHS = 5
ITEM_ALPHA = 1e-6
LEARNING_RATE = 0.005
LEARNING_SCHEDULE = 'adagrad'
RANDOM_SEED = 29031994    

warp_model = LightFM(loss='warp',
                    learning_rate=LEARNING_RATE,
                    learning_schedule=LEARNING_SCHEDULE,
                    item_alpha=ITEM_ALPHA,
                    no_components=NUM_COMPONENTS,
                    random_state=RANDOM_SEED)

bpr_model = LightFM(loss='bpr',
                    learning_rate=LEARNING_RATE,
                    learning_schedule=LEARNING_SCHEDULE,
                    item_alpha=ITEM_ALPHA,
                    no_components=NUM_COMPONENTS,
                    random_state=RANDOM_SEED)

我的五官形状如下:

如何优化我的超参数以提高曲线下面积 (AUC) 分数?

您可以在 sklearn docs.

中找到一个很好的超参数优化通用指南

一种可用于优化 LightFM 模型的简单但有效的技术是 random search。大致包括以下步骤:

  1. 将您的数据分成训练集、验证集和测试集。
  2. 为您要优化的每个超参数定义一个分布。例如,如果您正在优化学习率,则可以使用均值为 0.05 的指数分布;如果你正在优化损失函数,你可以从 ['warp', 'bpr', 'warp-kos'].
  3. 中均匀采样
  4. 在优化的每次迭代中,对所有超参数进行采样并使用它们在训练数据上拟合模型。评估模型在验证集上的表现。
  5. 执行一系列优化步骤后,select 验证性能最佳的那个。

要衡量最终模型的性能,您应该使用测试集:只需评估测试集上的最佳验证模型。

以下脚本说明了这一点:

import itertools

import numpy as np

from lightfm import LightFM
from lightfm.evaluation import auc_score


def sample_hyperparameters():
    """
    Yield possible hyperparameter choices.
    """

    while True:
        yield {
            "no_components": np.random.randint(16, 64),
            "learning_schedule": np.random.choice(["adagrad", "adadelta"]),
            "loss": np.random.choice(["bpr", "warp", "warp-kos"]),
            "learning_rate": np.random.exponential(0.05),
            "item_alpha": np.random.exponential(1e-8),
            "user_alpha": np.random.exponential(1e-8),
            "max_sampled": np.random.randint(5, 15),
            "num_epochs": np.random.randint(5, 50),
        }


def random_search(train, test, num_samples=10, num_threads=1):
    """
    Sample random hyperparameters, fit a LightFM model, and evaluate it
    on the test set.

    Parameters
    ----------

    train: np.float32 coo_matrix of shape [n_users, n_items]
        Training data.
    test: np.float32 coo_matrix of shape [n_users, n_items]
        Test data.
    num_samples: int, optional
        Number of hyperparameter choices to evaluate.


    Returns
    -------

    generator of (auc_score, hyperparameter dict, fitted model)

    """

    for hyperparams in itertools.islice(sample_hyperparameters(), num_samples):
        num_epochs = hyperparams.pop("num_epochs")

        model = LightFM(**hyperparams)
        model.fit(train, epochs=num_epochs, num_threads=num_threads)

        score = auc_score(model, test, train_interactions=train, num_threads=num_threads).mean()

        hyperparams["num_epochs"] = num_epochs

        yield (score, hyperparams, model)


if __name__ == "__main__":
    from lightfm.datasets import fetch_movielens

    data = fetch_movielens()
    train = data["train"]
    test = data["test"]

    (score, hyperparams, model) = max(random_search(train, test, num_threads=2), key=lambda x: x[0])

    print("Best score {} at {}".format(score, hyperparams))