解析 xml 文件时,由于 spark 中的类型不匹配,无法解决爆炸问题

cannot resolve explode due to type mismatch in spark while parsing xml file

我有一个具有以下架构的数据框

root
 |-- DataPartition: long (nullable = true)
 |-- TimeStamp: string (nullable = true)
 |-- _organizationId: long (nullable = true)
 |-- _segmentId: long (nullable = true)
 |-- seg:BusinessSegments: struct (nullable = true)
 |    |-- seg:BusinessSegment: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)
 |    |    |    |-- _VALUE: string (nullable = true)
 |    |    |    |-- _hierarchicalCode: long (nullable = true)
 |    |    |    |-- _industryId: long (nullable = true)
 |    |    |    |-- _ranking: long (nullable = true)
 |-- seg:GeographicSegments: struct (nullable = true)
 |    |-- seg:GeographicSegment: struct (nullable = true)
 |    |    |-- _geographyId: long (nullable = true)
 |    |    |-- seg:IsSubtracted: boolean (nullable = true)
 |    |    |-- seg:Sequence: long (nullable = true)
 |-- seg:IsCorporate: boolean (nullable = true)
 |-- seg:IsElimination: boolean (nullable = true)
 |-- seg:IsOperatingSegment: boolean (nullable = true)
 |-- seg:IsOther: boolean (nullable = true)
 |-- seg:IsShariaCompliant: boolean (nullable = true)
 |-- seg:PredecessorSegments: struct (nullable = true)
 |    |-- seg:PredecessorSegment: long (nullable = true)
 |-- seg:SegmentLocalLanguageLabel: struct (nullable = true)
 |    |-- _VALUE: string (nullable = true)
 |    |-- _languageId: long (nullable = true)
 |-- seg:SegmentName: struct (nullable = true)
 |    |-- _VALUE: string (nullable = true)
 |    |-- _languageId: long (nullable = true)
 |-- seg:SegmentType: string (nullable = true)
 |-- seg:SegmentTypeId: long (nullable = true)
 |-- seg:ValidFromPeriodEndDate: string (nullable = true)
 |-- _action: string (nullable = true)

现在我想从架构中获取 seg:BusinessSegments.seg:BusinessSegment 值。

但我的问题是当我使用 explode 执行此操作时

val GeographicSegmentchildDF = parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode($"seg:GeographicSegments.seg:GeographicSegment").as("GeographicSegments"), $"_action")
val GeographicSegmentchildArrayDF = GeographicSegmentchildDF.select(getDataPartition($"DataPartition").as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId".as("OrganizationId"), $"_segmentId".as("SegmentId"), $"GeographicSegments.*", getFFActionChild($"_action").as("FFAction|!|"))

所以在第一行我正在爆炸,在下一行我正在做 * 或扩展 $"GeographicSegments.*",

我收到类似这样的错误 这就是我正在做的

Exception in thread "main" org.apache.spark.sql.AnalysisException: cannot resolve 'explode(seg:GeographicSegments.seg:GeographicSegment)' due to data type mismatch:

我知道这个问题,因为在模式中我得到 seg:GeographicSegment 作为结构而不是数组,这就是为什么我得到 .

所以真正的问题是我没有固定的架构。

当 xml 文件中有两条记录时,seg:GeographicSegment 变成数组,然后我的代码工作正常,但是当我只得到一条记录时,它作为结构工作我的代码失败了。

我如何在我的代码中处理这个问题。 解析模式时是否必须设置条件? 或者有没有我

这是其中一个不起作用的案例

val columnTypePredecessorSegments = parentDF.select($"seg:PredecessorSegments.seg:PredecessorSegment").schema.map(_.dataType).head.toString().startsWith("LongType")
    //if column type is struct then use .* and array function to convert the struct to array else just use array
    val PredecessorSegmentschildDF = if (columnTypePredecessorSegments) {
      parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode(array($"seg:PredecessorSegments.seg:PredecessorSegment")).as("PredecessorSegments"), $"_action")
    } else {
      parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode($"seg:PredecessorSegments.seg:PredecessorSegment").as("PredecessorSegments"), $"_action")
    }
    val PredecessorSegmentsDFFinalChilddDF = PredecessorSegmentschildDF.select(getDataPartition($"DataPartition").as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId".as("OrganizationId"), $"_segmentId".as("SuccessorSegment"), $"PredecessorSegments.*", getFFActionChild($"_action").as("FFAction|!|"))
    PredecessorSegmentsDFFinalChilddDF.show(false)

When there are two records in xml file then seg:GeographicSegment becomes as array and then my code is working fine but when I get only one record then it work as struct and my code fails .

那么在使用 explode

之前,您需要检查列的数据类型
//checking for struct or array type in that column
val columnType = parentDF.select($"seg:GeographicSegments.seg:GeographicSegment").schema.map(_.dataType).head.toString().startsWith("StructType")

import org.apache.spark.sql.functions._
//if column type is struct then use .* and array function to convert the struct to array else just use array
val GeographicSegmentchildDF = if(columnType) {
  parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode(array($"seg:GeographicSegments.seg:GeographicSegment.*")).as("GeographicSegments"), $"_action")
}
else {
  parentDF.select($"DataPartition".as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId", $"_segmentId", explode($"seg:GeographicSegments.seg:GeographicSegment").as("GeographicSegments"), $"_action")
}
val GeographicSegmentchildArrayDF = GeographicSegmentchildDF.select(getDataPartition($"DataPartition").as("DataPartition"), $"TimeStamp".as("TimeStamp"), $"_organizationId".as("OrganizationId"), $"_segmentId".as("SegmentId"), $"GeographicSegments.*", getFFActionChild($"_action").as("FFAction|!|"))

希望回答对你有帮助