门生如何解释外延限制和普遍限制的多重表述
How the multiple statements on Extenstial restrictions and universal restriction interpreted in protege
我是 Protégé 的新手。我有一个问题与 Protégé 中 existential 限制和 universal 限制的使用有关。
我以 Protégé Pizza ontology 指南中的示例为例。
根据指南中的说明
when multiple restrictions are used the total description is taken to be the intersection of individual restrictions
因此让我们说:
hasTopping some CheeseTopping
hasTopping some VegetableTopping
应解释为
hasTopping some (CheeseTopping and VegetableTopping)
和
hasTopping only CheeseTopping
hasTopping only VegetableTopping
应解释为
hasTopping only (CheeseTopping and VegetableTopping)
现在从上面的理解来看,因为CheeseTopping
和VegetableTopping
类都是Disjoint
所以,这两种说法在逻辑上应该都是正确的。但是为什么在上面的语句中 protege 给出了通用限制语句的错误:
hasTopping only CheeseTopping
hasTopping only VegetableTopping
而对于存在限制,下面的语句是正确的吗?
hasTopping some CheeseTopping
hasTopping some VegetableTopping
请帮助我澄清这个问题。
提前致谢
@Artemis,感谢您的澄清。根据我对你最后评论的理解,如果我接受 "some" 限制,由于开放世界的假设,这个陈述被门徒推理者视为真实。但是,如果我阅读上面的示例行,其中如果出现 2 个浇头的交集,即 hasTopping 一些(CheeseTopping 和 VegetableTopping),逻辑上这将是不正确的,因为 类 是不相交的,但由于事实上有可以有一些回旋余地,这个陈述被保护推理者认为是正确的。而唯一的限制是 Hard 限制,它没有量化任何余地,从而导致 protege reasoner 出错。但是我觉得如果 ontology 非常大,那么处理 "some" 限制是非常混乱的情况。
从逻辑上讲,通用量词提到:
A restriction containing an owl:allValuesFrom constraint is used to describe a class of all individuals for which all values of the property under consideration are either members of the class extension of the class description or are data values within the specified data range. In other words, it defines a class of individuals x for which holds that if the pair (x,y) is an instance of P (the property concerned), then y should be an instance of the class description or a value in the data range, respectively.
然而,Existential 量词提到:
A restriction containing an owl:someValuesFrom constraint describes a class of all individuals for which at least one value of the property concerned is an instance of the class description or a data value in the data range. In other words, it defines a class of individuals x for which there is at least one y (either an instance of the class description or value of the data range) such that the pair (x,y) is an instance of P. This does not exclude that there are other instances (x,y') of P for which y' does not belong to the class description or data range.
这就是推理者不接受其中一个定义的原因。所以推理者假设hasTopping only (CheeseTopping and VegetableTopping)
对于所有这个class的成员都是真的,这显然不是真的。
基本上only
是硬限制。 some
表示它必须至少有一个 class x 的个体,但可以有其他 class 的个体。使用only
,你说的是这个属性范围内的每个个体都必须是class X的个体。因此,当使用交集时,有余地在对付some
的时候,除非你身边有违背这条规则的人,否则可能不会出现这种情况。但是在only
的情况下,不管ontology里面是什么,这条规则总是矛盾的。
我是 Protégé 的新手。我有一个问题与 Protégé 中 existential 限制和 universal 限制的使用有关。 我以 Protégé Pizza ontology 指南中的示例为例。 根据指南中的说明
when multiple restrictions are used the total description is taken to be the intersection of individual restrictions
因此让我们说:
hasTopping some CheeseTopping
hasTopping some VegetableTopping
应解释为
hasTopping some (CheeseTopping and VegetableTopping)
和
hasTopping only CheeseTopping
hasTopping only VegetableTopping
应解释为
hasTopping only (CheeseTopping and VegetableTopping)
现在从上面的理解来看,因为CheeseTopping
和VegetableTopping
类都是Disjoint
所以,这两种说法在逻辑上应该都是正确的。但是为什么在上面的语句中 protege 给出了通用限制语句的错误:
hasTopping only CheeseTopping
hasTopping only VegetableTopping
而对于存在限制,下面的语句是正确的吗?
hasTopping some CheeseTopping
hasTopping some VegetableTopping
请帮助我澄清这个问题。
提前致谢
@Artemis,感谢您的澄清。根据我对你最后评论的理解,如果我接受 "some" 限制,由于开放世界的假设,这个陈述被门徒推理者视为真实。但是,如果我阅读上面的示例行,其中如果出现 2 个浇头的交集,即 hasTopping 一些(CheeseTopping 和 VegetableTopping),逻辑上这将是不正确的,因为 类 是不相交的,但由于事实上有可以有一些回旋余地,这个陈述被保护推理者认为是正确的。而唯一的限制是 Hard 限制,它没有量化任何余地,从而导致 protege reasoner 出错。但是我觉得如果 ontology 非常大,那么处理 "some" 限制是非常混乱的情况。
从逻辑上讲,通用量词提到:
A restriction containing an owl:allValuesFrom constraint is used to describe a class of all individuals for which all values of the property under consideration are either members of the class extension of the class description or are data values within the specified data range. In other words, it defines a class of individuals x for which holds that if the pair (x,y) is an instance of P (the property concerned), then y should be an instance of the class description or a value in the data range, respectively.
然而,Existential 量词提到:
A restriction containing an owl:someValuesFrom constraint describes a class of all individuals for which at least one value of the property concerned is an instance of the class description or a data value in the data range. In other words, it defines a class of individuals x for which there is at least one y (either an instance of the class description or value of the data range) such that the pair (x,y) is an instance of P. This does not exclude that there are other instances (x,y') of P for which y' does not belong to the class description or data range.
这就是推理者不接受其中一个定义的原因。所以推理者假设hasTopping only (CheeseTopping and VegetableTopping)
对于所有这个class的成员都是真的,这显然不是真的。
基本上only
是硬限制。 some
表示它必须至少有一个 class x 的个体,但可以有其他 class 的个体。使用only
,你说的是这个属性范围内的每个个体都必须是class X的个体。因此,当使用交集时,有余地在对付some
的时候,除非你身边有违背这条规则的人,否则可能不会出现这种情况。但是在only
的情况下,不管ontology里面是什么,这条规则总是矛盾的。