Tensorflow:训练神经网络时损失没有改善
Tensorflow: No improvement in loss while training neural net
我制作了这个神经网络,但每次我 运行 它都会给我不同的损失,开始时它在整个循环中保持不变。我想为 'xx' 中的每 3 个值预测一个 'yy' 中的值作为输入。另外我怎样才能显示我的输出?例如:我想显示一个数组,其预测值尽可能接近 'yy'.
中的值
import tensorflow as tf
xx=(
[178.72,218.38,171.1],
[211.57,215.63,173.13],
[196.25,196.69,116.91],
[121.88,132.07,85.02],
[117.04,135.44,112.54],
[118.13,124.04,97.98],
[116.73,125.88,99.04],
[118.75,125.01,110.16],
[109.69,111.72,69.07],
[76.57,96.88,67.38],
[91.69,128.43,87.57],
[117.57,146.43,117.57]
)
yy=(
[212.09],
[195.58],
[127.6],
[116.5],
[117.95],
[117.55],
[117.55],
[110.39],
[74.33],
[91.08],
[121.75],
[127.3]
)
x=tf.placeholder(tf.float32,[None,3])
y=tf.placeholder(tf.float32,[None,1])
n1=5
n2=5
classes=12
def neuralnetwork(data):
hl1={'weights':tf.Variable(tf.random_normal([3,n1])),'biases':tf.Variable(tf.random_normal([n1]))}
hl2={'weights':tf.Variable(tf.random_normal([n1,n2])),'biases':tf.Variable(tf.random_normal([n2]))}
op={'weights':tf.Variable(tf.random_normal([n2,classes])),'biases':tf.Variable(tf.random_normal([classes]))}
l1=tf.add(tf.matmul(data,hl1['weights']),hl1['biases'])
l1=tf.nn.relu(l1)
l2=tf.add(tf.matmul(l1,hl2['weights']),hl2['biases'])
l2=tf.nn.relu(l2)
output=tf.matmul(l2,op['weights'])+op['biases']
return output
def train(x):
pred=neuralnetwork(x)
# cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
sq = tf.square(pred-y)
loss=tf.reduce_mean(sq)
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
#optimizer=tf.train.RMSPropOptimizer(0.01).minimize(cost)
epochs=100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
epoch_loss=0
for i in range (int(1)):
batch_x=xx
batch_y=yy
# a=tf.shape(xx)
#print(sess.run(a))
c=sess.run(loss,feed_dict={x:batch_x, y: batch_y})
epoch_loss+=c
print("Epoch ",epoch," completed out of ",epochs, 'loss:', epoch_loss)
train(x)
我不确定你到底想完成什么,但在我看来这是一个回归问题,而不是分类问题。我认为以下代码是您想要的。我已经稍微清理了一下,但仍试图以您会认出的方式保留它。我个人会以不同的方式写这篇文章。
import tensorflow as tf
xx = (
[178.72, 218.38, 171.1],
[211.57, 215.63, 173.13],
[196.25, 196.69, 116.91],
[121.88, 132.07, 85.02],
[117.04, 135.44, 112.54],
[118.13, 124.04, 97.98],
[116.73, 125.88, 99.04],
[118.75, 125.01, 110.16],
[109.69, 111.72, 69.07],
[76.57, 96.88, 67.38],
[91.69, 128.43, 87.57],
[117.57, 146.43, 117.57]
)
yy = (212.09, 195.58, 127.6, 116.5, 117.95, 117.55, 117.55,
110.39, 74.33, 91.08, 121.75, 127.3)
x = tf.placeholder(tf.float32, [None, 3])
y = tf.placeholder(tf.float32, [None])
def neuralnetwork(data, n1=5, n2=5):
hl1 = {'weights': tf.Variable(tf.random_normal([3, n1])), 'biases':
tf.Variable(tf.random_normal([n1]))}
hl2 = {'weights': tf.Variable(tf.random_normal([n1, n2])),
'biases': tf.Variable(tf.random_normal([n2]))}
op = {'weights': tf.Variable(tf.random_normal([n2, 1])), 'biases':
tf.Variable(tf.random_normal([1]))}
l1 = tf.add(tf.matmul(data, hl1['weights']), hl1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hl2['weights']), hl2['biases'])
l2 = tf.nn.relu(l2)
output = tf.matmul(l2, op['weights']) + op['biases']
return output
N_EPOCHS = 100
if __name__ == '__main__':
pred = neuralnetwork(x)
loss = tf.reduce_mean(tf.squared_difference(pred, y))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(N_EPOCHS):
epoch_loss = sess.run([train, loss], feed_dict={x: xx, y: yy})[1]
print("Epoch", epoch, " completed out of", N_EPOCHS, "loss:",
epoch_loss)
您犯了两个主要错误:
你正试图有 12 个输出节点,你可能想要的是一个节点,它试图预测相应的 y 值。
您没有调用 train
操作,因此优化器实际上没有做任何事情。
Also how can I show my output? For example: I want to show an array having predictions as close as possible to the values in 'yy'
例如这些行:
predictions = sess.run(pred, feed_dict={x: xx, y: yy})
print("Predictions:", predictions)
这将简单地评估计算图的一部分,这是计算 pred
张量所必需的,使用整个数据集作为输入,将其输入占位符。
但是,正如您所见,无论输入如何,您的网络都会简单地学习预测标签的平均值。
我制作了这个神经网络,但每次我 运行 它都会给我不同的损失,开始时它在整个循环中保持不变。我想为 'xx' 中的每 3 个值预测一个 'yy' 中的值作为输入。另外我怎样才能显示我的输出?例如:我想显示一个数组,其预测值尽可能接近 'yy'.
中的值import tensorflow as tf
xx=(
[178.72,218.38,171.1],
[211.57,215.63,173.13],
[196.25,196.69,116.91],
[121.88,132.07,85.02],
[117.04,135.44,112.54],
[118.13,124.04,97.98],
[116.73,125.88,99.04],
[118.75,125.01,110.16],
[109.69,111.72,69.07],
[76.57,96.88,67.38],
[91.69,128.43,87.57],
[117.57,146.43,117.57]
)
yy=(
[212.09],
[195.58],
[127.6],
[116.5],
[117.95],
[117.55],
[117.55],
[110.39],
[74.33],
[91.08],
[121.75],
[127.3]
)
x=tf.placeholder(tf.float32,[None,3])
y=tf.placeholder(tf.float32,[None,1])
n1=5
n2=5
classes=12
def neuralnetwork(data):
hl1={'weights':tf.Variable(tf.random_normal([3,n1])),'biases':tf.Variable(tf.random_normal([n1]))}
hl2={'weights':tf.Variable(tf.random_normal([n1,n2])),'biases':tf.Variable(tf.random_normal([n2]))}
op={'weights':tf.Variable(tf.random_normal([n2,classes])),'biases':tf.Variable(tf.random_normal([classes]))}
l1=tf.add(tf.matmul(data,hl1['weights']),hl1['biases'])
l1=tf.nn.relu(l1)
l2=tf.add(tf.matmul(l1,hl2['weights']),hl2['biases'])
l2=tf.nn.relu(l2)
output=tf.matmul(l2,op['weights'])+op['biases']
return output
def train(x):
pred=neuralnetwork(x)
# cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
sq = tf.square(pred-y)
loss=tf.reduce_mean(sq)
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
#optimizer=tf.train.RMSPropOptimizer(0.01).minimize(cost)
epochs=100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
epoch_loss=0
for i in range (int(1)):
batch_x=xx
batch_y=yy
# a=tf.shape(xx)
#print(sess.run(a))
c=sess.run(loss,feed_dict={x:batch_x, y: batch_y})
epoch_loss+=c
print("Epoch ",epoch," completed out of ",epochs, 'loss:', epoch_loss)
train(x)
我不确定你到底想完成什么,但在我看来这是一个回归问题,而不是分类问题。我认为以下代码是您想要的。我已经稍微清理了一下,但仍试图以您会认出的方式保留它。我个人会以不同的方式写这篇文章。
import tensorflow as tf
xx = (
[178.72, 218.38, 171.1],
[211.57, 215.63, 173.13],
[196.25, 196.69, 116.91],
[121.88, 132.07, 85.02],
[117.04, 135.44, 112.54],
[118.13, 124.04, 97.98],
[116.73, 125.88, 99.04],
[118.75, 125.01, 110.16],
[109.69, 111.72, 69.07],
[76.57, 96.88, 67.38],
[91.69, 128.43, 87.57],
[117.57, 146.43, 117.57]
)
yy = (212.09, 195.58, 127.6, 116.5, 117.95, 117.55, 117.55,
110.39, 74.33, 91.08, 121.75, 127.3)
x = tf.placeholder(tf.float32, [None, 3])
y = tf.placeholder(tf.float32, [None])
def neuralnetwork(data, n1=5, n2=5):
hl1 = {'weights': tf.Variable(tf.random_normal([3, n1])), 'biases':
tf.Variable(tf.random_normal([n1]))}
hl2 = {'weights': tf.Variable(tf.random_normal([n1, n2])),
'biases': tf.Variable(tf.random_normal([n2]))}
op = {'weights': tf.Variable(tf.random_normal([n2, 1])), 'biases':
tf.Variable(tf.random_normal([1]))}
l1 = tf.add(tf.matmul(data, hl1['weights']), hl1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hl2['weights']), hl2['biases'])
l2 = tf.nn.relu(l2)
output = tf.matmul(l2, op['weights']) + op['biases']
return output
N_EPOCHS = 100
if __name__ == '__main__':
pred = neuralnetwork(x)
loss = tf.reduce_mean(tf.squared_difference(pred, y))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(N_EPOCHS):
epoch_loss = sess.run([train, loss], feed_dict={x: xx, y: yy})[1]
print("Epoch", epoch, " completed out of", N_EPOCHS, "loss:",
epoch_loss)
您犯了两个主要错误:
你正试图有 12 个输出节点,你可能想要的是一个节点,它试图预测相应的 y 值。
您没有调用
train
操作,因此优化器实际上没有做任何事情。
Also how can I show my output? For example: I want to show an array having predictions as close as possible to the values in 'yy'
例如这些行:
predictions = sess.run(pred, feed_dict={x: xx, y: yy})
print("Predictions:", predictions)
这将简单地评估计算图的一部分,这是计算 pred
张量所必需的,使用整个数据集作为输入,将其输入占位符。
但是,正如您所见,无论输入如何,您的网络都会简单地学习预测标签的平均值。