如何删除训练定义?
How to delete training definitions?
我正在试用用于神经网络的 Watson Studio 可视化建模器。在学习过程中,我尝试了几种不同的设计,并发表了几种训练定义。
如果我导航到 Experiment Builder,我会看到很多定义,有些是旧的,不再需要了。
如何删除旧的训练定义? (最好来自 Watson Studio UI)
Watson Machine Learning python client doesn't support deleting training run definitions. WML's python client API 显示支持的选项。不过,WML 团队正在努力添加此类删除功能。
同时,您可以使用WML's CLI tool执行bx ml delete
:
NAME:
delete - Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs
USAGE:
bx ml delete models MODEL-ID
bx ml delete deployments MODEL-ID DEPLOYMENT-ID
bx ml delete training-runs TRAINING-RUN-ID
bx ml delete training-definitions TRAINING-DEFINITION-ID
bx ml delete experiments EXPERIMENT-ID
bx ml delete experiment-runs EXPERIMENT-ID EXPERIMENT-RUN-ID
使用 bx ml list
获取有关您要删除的项目的详细信息:
实际上,python客户端支持删除训练定义。
您只需调用 client.repository.delete(artifact_uid)。可以使用相同的方法从存储库中删除任何项目(模型、training_definition、实验)。它记录在 python 客户端文档 btw:
删除(artifact_uid)
Delete model, definition or experiment from repository.
Parameters: artifact_uid ({str_type}) – stored model, definition, or experiment UID
A way you might use me is:
>>> client.repository.delete(artifact_uid)
Training_run 与 training_definition 完全不同。
如果需要,您也可以将其删除:
删除(run_uid)
Delete training run.
Parameters: run_uid ({str_type}) – ID of trained model
A way you might use me is:
>>> client.training.delete(run_uid)
如果需要,您还可以删除 experiment_run,方法是调用:
删除(实验_run_uid)
Delete experiment run.
Parameters: experiment_run_uid ({str_type}) – experiment run UID
A way you might use me is
>>> client.experiments.delete(experiment_run_uid)
请参阅 python 客户端文档以获取更多详细信息:http://wml-api-pyclient-dev.mybluemix.net/
我正在试用用于神经网络的 Watson Studio 可视化建模器。在学习过程中,我尝试了几种不同的设计,并发表了几种训练定义。
如果我导航到 Experiment Builder,我会看到很多定义,有些是旧的,不再需要了。
如何删除旧的训练定义? (最好来自 Watson Studio UI)
Watson Machine Learning python client doesn't support deleting training run definitions. WML's python client API 显示支持的选项。不过,WML 团队正在努力添加此类删除功能。
同时,您可以使用WML's CLI tool执行bx ml delete
:
NAME:
delete - Delete a model/deployment/training-run/training-definitions/experiments/experiment-runs
USAGE:
bx ml delete models MODEL-ID
bx ml delete deployments MODEL-ID DEPLOYMENT-ID
bx ml delete training-runs TRAINING-RUN-ID
bx ml delete training-definitions TRAINING-DEFINITION-ID
bx ml delete experiments EXPERIMENT-ID
bx ml delete experiment-runs EXPERIMENT-ID EXPERIMENT-RUN-ID
使用 bx ml list
获取有关您要删除的项目的详细信息:
实际上,python客户端支持删除训练定义。 您只需调用 client.repository.delete(artifact_uid)。可以使用相同的方法从存储库中删除任何项目(模型、training_definition、实验)。它记录在 python 客户端文档 btw:
删除(artifact_uid)
Delete model, definition or experiment from repository.
Parameters: artifact_uid ({str_type}) – stored model, definition, or experiment UID
A way you might use me is:
>>> client.repository.delete(artifact_uid)
Training_run 与 training_definition 完全不同。 如果需要,您也可以将其删除:
删除(run_uid)
Delete training run.
Parameters: run_uid ({str_type}) – ID of trained model
A way you might use me is:
>>> client.training.delete(run_uid)
如果需要,您还可以删除 experiment_run,方法是调用:
删除(实验_run_uid)
Delete experiment run.
Parameters: experiment_run_uid ({str_type}) – experiment run UID
A way you might use me is
>>> client.experiments.delete(experiment_run_uid)
请参阅 python 客户端文档以获取更多详细信息:http://wml-api-pyclient-dev.mybluemix.net/