当我对手动创建的 Dataframe 执行操作时出现 Pyspark 错误

Pyspark error when I do an action on Dataframe which I created manually

我有一个 python 字符串列表。我使用以下代码用一列从中创建了一个数据框:

skills_df = spark.createDataFrame(temp, StringType())

其中,temp 是字符串列表。 此步骤已成功执行。

当我尝试对 skills_df 执行任何操作时,例如 skills_df.count(),它给我一个错误。它发生在这个数据框上。但是,不是我通过导入 csv 文件创建的数据框,即 csv_df = spark.read.csv('/user/turing/Profiles_final.csv', header=True)。 我 运行 这个使用 spark-submit。在调试时,我 运行 pyspark 中的相同代码,我得到了同样的错误。但是,当我执行 csv_df.count() 时,即使在发生错误之后,它 运行 也很好。 请帮我解决这个错误。以下是堆栈跟踪:

18/04/26 07:05:10 WARN org.apache.spark.scheduler.TaskSetManager: Stage 14 contains a task of very large size (215 KB). The maximum recommended task size is 100 KB.
18/04/26 07:05:11 WARN org.apache.spark.scheduler.TaskSetManager: Lost task 2.0 in stage 14.0 (TID 658, spark-w-1.c.amulya.internal, executor 2): java.io.IOException: Cannot run program "/opt/conda/bin/python": error=2, No such file or directory
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1048)
    at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:163)
    at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:65)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:128)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
    at org.apache.spark.scheduler.Task.run(Task.scala:108)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: error=2, No such file or directory
    at java.lang.UNIXProcess.forkAndExec(Native Method)
    at java.lang.UNIXProcess.<init>(UNIXProcess.java:247)
    at java.lang.ProcessImpl.start(ProcessImpl.java:134)
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1029)
    ... 33 more

18/04/26 07:05:11 ERROR org.apache.spark.scheduler.TaskSetManager: Task 2 in stage 14.0 failed 4 times; aborting job
18/04/26 07:05:11 WARN org.apache.spark.ExecutorAllocationManager: No stages are running, but numRunningTasks != 0
Traceback (most recent call last):
  File "/home/turing/mi/sample_job.py", line 95, in <module>
    skills = processing_methods.get_skills(company, position, company_df)
  File "/home/turing/mi/sample_job.py", line 72, in get_skills
    return skills_df.groupBy('value').count().head(5)
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 972, in head
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 476, in take
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 438, in collect
  File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
  File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o134.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 14.0 failed 4 times, most recent failure: Lost task 2.3 in stage 14.0 (TID 667, spark-w-1.c.amulya.internal, executor 2): java.io.IOException: Cannot run program "/opt/conda/bin/python": error=2, No such file or directory
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1048)
    at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:163)
    at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:65)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:128)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
    at org.apache.spark.scheduler.Task.run(Task.scala:108)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: error=2, No such file or directory
    at java.lang.UNIXProcess.forkAndExec(Native Method)
    at java.lang.UNIXProcess.<init>(UNIXProcess.java:247)
    at java.lang.ProcessImpl.start(ProcessImpl.java:134)
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1029)
    ... 33 more

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1505)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1504)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:814)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:814)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
    at org.apache.spark.util.EventLoop$$anon.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython.apply$mcI$sp(Dataset.scala:2808)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython.apply(Dataset.scala:2805)
    at org.apache.spark.sql.Dataset$$anonfun$collectToPython.apply(Dataset.scala:2805)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
    at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2828)
    at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2805)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: Cannot run program "/opt/conda/bin/python": error=2, No such file or directory
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1048)
    at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:163)
    at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
    at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:65)
    at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:128)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
    at org.apache.spark.scheduler.Task.run(Task.scala:108)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more
Caused by: java.io.IOException: error=2, No such file or directory
    at java.lang.UNIXProcess.forkAndExec(Native Method)
    at java.lang.UNIXProcess.<init>(UNIXProcess.java:247)
    at java.lang.ProcessImpl.start(ProcessImpl.java:134)
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1029)
    ... 33 more

18/04/26 07:05:11 WARN org.apache.spark.scheduler.TaskSetManager: Lost task 0.0 in stage 14.0 (TID 656, spark-w-0.c.amulya.internal, executor 4): TaskKilled (stage cancelled)
18/04/26 07:05:11 INFO org.spark_project.jetty.server.AbstractConnector: Stopped Spark@3af4a719{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
18/04/26 07:05:11 WARN org.apache.spark.rpc.netty.Dispatcher: Message RemoteProcessDisconnected(10.138.0.6:39486) dropped. Could not find OutputCommitCoordinator.

Spark 在 google 云 dataproc 集群上 运行。 谢谢。

编辑 1:

以下是临时变量及其值:

temp = ['javascript', 'html', 'css', 'jquery', 'ajax', 'ruby on rails', 'agile', 'linux']

初始化操作需要 运行 在集群的 所有 节点上,而不仅仅是主节点。驱动程序成功启动,因为您 运行 在 master 上执行了 init 操作,但随后作业在执行器上失败,因为它们没有安装 Conda。

一般来说,您不应该 运行 手动初始化操作。例如。如果稍后将节点添加到集群,则还需要 运行 新节点上的脚本。但是,如果您在创建集群时指定初始化操作,Dataproc 将为您处理。

您可以通过 Web 控制台指定初始化操作:

请注意,如果要为 init 操作指定元数据(标志),例如要安装的 conda 包,则需要使用 gcloud。最简单的方法是从创建集群页面底部的 "Equivalent command line" 开始。

一般来说,如果您想添加初始化操作或添加标志,我建议您删除并重新创建您的集群。如果您的输入数据位于集群外部(例如 Cloud Storage),这将特别容易。