如何 运行 报告所有因子变量的回归?

How to run a regression which report all factor variables?

我想要 运行 regression 计算 factor 变量所有水平的估计值。默认情况下,Stata 会省略一个虚拟作为 base 级别。

当我使用 allbaselevels 选项时,它只显示 base 级别的零值:

regress adjusted_volume i.rounded_time, allbaselevels

SAS 显示去除常量后分类变量的所有估计值。

我如何在 Stata 中做同样的事情?

选项 allbaselevels 是几个 显示选项 之一,它在报告 regress 等估计命令的结果时很有用。但是将其指定为选项不会对计算产生任何影响。

正如 Stata manual 指出的那样:

"...The allbaselevels option is much like baselevels, except allbaselevels lists base levels in interactions as well as in main effects. Specifying allbaselevels will make the output easier to understand..."

您实际要查找的是 ibn. 因子变量运算符:

. sysuse auto, clear
(1978 Automobile Data)

. regress mpg ibn.rep78
note: 5.rep78 omitted because of collinearity

  Source |       SS           df       MS          Number of obs   =        69
-------------+----------------------------------   F(4, 64)        =      4.91
   Model |  549.415777         4  137.353944       Prob > F        =    0.0016
Residual |  1790.78712        64  27.9810488       R-squared       =    0.2348
-------------+----------------------------------   Adj R-squared   =    0.1869
   Total |   2340.2029        68  34.4147485       Root MSE        =    5.2897

------------------------------------------------------------------------------
     mpg |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   rep78 |
      1  |  -6.363636   4.066234    -1.56   0.123    -14.48687    1.759599
      2  |  -8.238636   2.457918    -3.35   0.001    -13.14889    -3.32838
      3  |  -7.930303    1.86452    -4.25   0.000    -11.65511   -4.205497
      4  |   -5.69697    2.02441    -2.81   0.006    -9.741193   -1.652747
      5  |          0  (omitted)
         |
   _cons |   27.36364   1.594908    17.16   0.000     24.17744    30.54983
------------------------------------------------------------------------------

当然还需要指定noconstant选项:

. regress mpg ibn.rep78, noconstant

  Source |       SS           df       MS          Number of obs   =        69
-------------+----------------------------------   F(5, 64)        =    227.47
   Model |  31824.2129         5  6364.84258       Prob > F        =    0.0000
Residual |  1790.78712        64  27.9810488       R-squared       =    0.9467
-------------+----------------------------------   Adj R-squared   =    0.9426
   Total |       33615        69  487.173913       Root MSE        =    5.2897

------------------------------------------------------------------------------
     mpg |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   rep78 |
      1  |         21   3.740391     5.61   0.000     13.52771    28.47229
      2  |     19.125   1.870195    10.23   0.000     15.38886    22.86114
      3  |   19.43333   .9657648    20.12   0.000       17.504    21.36267
      4  |   21.66667   1.246797    17.38   0.000      19.1759    24.15743
      5  |   27.36364   1.594908    17.16   0.000     24.17744    30.54983
------------------------------------------------------------------------------