Pandas read_csv 使用不同的日期解析器
Pandas read_csv with different date parsers
我有一个包含时间序列数据的 csv 文件,第一列是 %Y:%m:%d
格式的日期,第二列是 '%H:%M:%S 格式的盘中时间'.我想将此 csv 文件导入到多索引数据框或面板对象中。
使用这段代码,它已经可以工作了:
_file_data = pd.read_csv(_file,
sep=",",
header=0,
index_col=['Date', 'Time'],
thousands="'",
parse_dates=True,
skipinitialspace=True
)
它returns数据格式如下:
Date Time Volume
2016-01-04 2018-04-25 09:01:29 53645
2018-04-25 10:01:29 123
2018-04-25 10:01:29 1345
....
2016-01-05 2018-04-25 10:01:29 123
2018-04-25 12:01:29 213
2018-04-25 10:01:29 123
第一个问题:
我想将第二个索引显示为纯时间对象而不是日期时间。为此,我必须在 read_csv 函数中声明两个不同的日期传递器,但我不知道如何做。 "best" 的方法是什么?
第二题:
创建 Dataframe 后,我将其转换为面板对象。你会建议这样做吗?面板对象是这种数据结构的更好选择吗?面板对象的优点(缺点)是什么?
要转换为时间序列,请使用 pd.to_timedelta
。
例如:
import pandas as pd
df = pd.DataFrame({"Time": ["2018-04-25 09:01:29", "2018-04-25 10:01:29", "2018-04-25 10:01:29"]})
df["Time"] = pd.to_timedelta(pd.to_datetime(df["Time"]).dt.strftime('%H:%M:%S'))
print df["Time"]
输出:
0 09:01:29
1 10:01:29
2 10:01:29
Name: Time, dtype: timedelta64[ns]
第一题:
您可以创建多个 converters
并在字典中定义解析器:
import pandas as pd
temp=u"""Date,Time,Volume
2016:01:04,09:00:00,53645
2016:01:04,09:20:00,0
2016:01:04,09:40:00,0
2016:01:04,10:00:00,1468
2016:01:05,10:00:00,246
2016:01:05,10:20:00,0
2016:01:05,10:40:00,0
2016:01:05,11:00:00,0
2016:01:05,11:20:00,0
2016:01:05,11:40:00,0
2016:01:05,12:00:00,213"""
def converter1(x):
#convert to datetime and then to times
return pd.to_datetime(x).time()
def converter2(x):
#define format of datetime
return pd.to_datetime(x, format='%Y:%m:%d')
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp),
index_col=['Date','Time'],
thousands="'",
skipinitialspace=True,
converters={'Time': converter1, 'Date': converter2})
print (df)
Volume
Date Time
2016-01-04 09:00:00 53645
09:20:00 0
09:40:00 0
10:00:00 1468
2016-01-05 10:00:00 246
10:20:00 0
10:40:00 0
11:00:00 0
11:20:00 0
11:40:00 0
12:00:00 213
有时可以使用内置解析器,例如如果日期格式为 YY-MM-DD
:
import pandas as pd
temp=u"""Date,Time,Volume
2016-01-04,09:00:00,53645
2016-01-04,09:20:00,0
2016-01-04,09:40:00,0
2016-01-04,10:00:00,1468
2016-01-05,10:00:00,246
2016-01-05,10:20:00,0
2016-01-05,10:40:00,0
2016-01-05,11:00:00,0
2016-01-05,11:20:00,0
2016-01-05,11:40:00,0
2016-01-05,12:00:00,213"""
def converter(x):
#define format of datetime
return pd.to_datetime(x).time()
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp),
index_col=['Date','Time'],
parse_dates=['Date'],
thousands="'",
skipinitialspace=True,
converters={'Time': converter})
print (df.index.get_level_values(0))
DatetimeIndex(['2016-01-04', '2016-01-04', '2016-01-04', '2016-01-04',
'2016-01-05', '2016-01-05', '2016-01-05', '2016-01-05',
'2016-01-05', '2016-01-05', '2016-01-05'],
dtype='datetime64[ns]', name='Date', freq=None)
最后可能的解决方案是通过 set_levels
将 datetime
转换为 MultiIndex
中的时间 - 处理后:
df.index = df.index.set_levels(df.index.get_level_values(1).time, level=1)
print (df)
Volume
Date Time
2016-01-04 09:00:00 53645
09:20:00 0
09:40:00 0
10:00:00 1468
2016-01-05 10:00:00 246
10:00:00 0
10:20:00 0
10:40:00 0
11:00:00 0
11:20:00 0
11:40:00 213
第二题:
Panel 在 pandas 0.20.+ 中是 deprecated,将在未来的版本中删除。
我有一个包含时间序列数据的 csv 文件,第一列是 %Y:%m:%d
格式的日期,第二列是 '%H:%M:%S 格式的盘中时间'.我想将此 csv 文件导入到多索引数据框或面板对象中。
使用这段代码,它已经可以工作了:
_file_data = pd.read_csv(_file,
sep=",",
header=0,
index_col=['Date', 'Time'],
thousands="'",
parse_dates=True,
skipinitialspace=True
)
它returns数据格式如下:
Date Time Volume
2016-01-04 2018-04-25 09:01:29 53645
2018-04-25 10:01:29 123
2018-04-25 10:01:29 1345
....
2016-01-05 2018-04-25 10:01:29 123
2018-04-25 12:01:29 213
2018-04-25 10:01:29 123
第一个问题: 我想将第二个索引显示为纯时间对象而不是日期时间。为此,我必须在 read_csv 函数中声明两个不同的日期传递器,但我不知道如何做。 "best" 的方法是什么?
第二题: 创建 Dataframe 后,我将其转换为面板对象。你会建议这样做吗?面板对象是这种数据结构的更好选择吗?面板对象的优点(缺点)是什么?
要转换为时间序列,请使用 pd.to_timedelta
。
例如:
import pandas as pd
df = pd.DataFrame({"Time": ["2018-04-25 09:01:29", "2018-04-25 10:01:29", "2018-04-25 10:01:29"]})
df["Time"] = pd.to_timedelta(pd.to_datetime(df["Time"]).dt.strftime('%H:%M:%S'))
print df["Time"]
输出:
0 09:01:29
1 10:01:29
2 10:01:29
Name: Time, dtype: timedelta64[ns]
第一题:
您可以创建多个 converters
并在字典中定义解析器:
import pandas as pd
temp=u"""Date,Time,Volume
2016:01:04,09:00:00,53645
2016:01:04,09:20:00,0
2016:01:04,09:40:00,0
2016:01:04,10:00:00,1468
2016:01:05,10:00:00,246
2016:01:05,10:20:00,0
2016:01:05,10:40:00,0
2016:01:05,11:00:00,0
2016:01:05,11:20:00,0
2016:01:05,11:40:00,0
2016:01:05,12:00:00,213"""
def converter1(x):
#convert to datetime and then to times
return pd.to_datetime(x).time()
def converter2(x):
#define format of datetime
return pd.to_datetime(x, format='%Y:%m:%d')
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp),
index_col=['Date','Time'],
thousands="'",
skipinitialspace=True,
converters={'Time': converter1, 'Date': converter2})
print (df)
Volume
Date Time
2016-01-04 09:00:00 53645
09:20:00 0
09:40:00 0
10:00:00 1468
2016-01-05 10:00:00 246
10:20:00 0
10:40:00 0
11:00:00 0
11:20:00 0
11:40:00 0
12:00:00 213
有时可以使用内置解析器,例如如果日期格式为 YY-MM-DD
:
import pandas as pd
temp=u"""Date,Time,Volume
2016-01-04,09:00:00,53645
2016-01-04,09:20:00,0
2016-01-04,09:40:00,0
2016-01-04,10:00:00,1468
2016-01-05,10:00:00,246
2016-01-05,10:20:00,0
2016-01-05,10:40:00,0
2016-01-05,11:00:00,0
2016-01-05,11:20:00,0
2016-01-05,11:40:00,0
2016-01-05,12:00:00,213"""
def converter(x):
#define format of datetime
return pd.to_datetime(x).time()
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp),
index_col=['Date','Time'],
parse_dates=['Date'],
thousands="'",
skipinitialspace=True,
converters={'Time': converter})
print (df.index.get_level_values(0))
DatetimeIndex(['2016-01-04', '2016-01-04', '2016-01-04', '2016-01-04',
'2016-01-05', '2016-01-05', '2016-01-05', '2016-01-05',
'2016-01-05', '2016-01-05', '2016-01-05'],
dtype='datetime64[ns]', name='Date', freq=None)
最后可能的解决方案是通过 set_levels
将 datetime
转换为 MultiIndex
中的时间 - 处理后:
df.index = df.index.set_levels(df.index.get_level_values(1).time, level=1)
print (df)
Volume
Date Time
2016-01-04 09:00:00 53645
09:20:00 0
09:40:00 0
10:00:00 1468
2016-01-05 10:00:00 246
10:00:00 0
10:20:00 0
10:40:00 0
11:00:00 0
11:20:00 0
11:40:00 213
第二题:
Panel 在 pandas 0.20.+ 中是 deprecated,将在未来的版本中删除。