索引超出边界的多个子图,除法剩余 python

index out of bound multiple subplots with division rest python

我正在从包含反应结果的数据框中创建多个子图(每个数据框 70 个),我想绘制 12 x 12 的反应图,以便在进行更彻底的分析之前快速查看。由于 70/12 留下余数,简单的实现将 运行 超出范围。我可以通过使用 "if,else" 语句来解决这个问题,但它既不优雅也不高效。我想知道是否有更好的选择。 warDf 的大小为 70,meanDf 的大小为 130x70。时间,pcmean 和 ncmean 的大小为 130。我正在使用库 pandas (pd)、numpy (np) 和 matplotlib.pyplot (plt)、

it=int(np.ceil(np.size(warDf)/12))# defining what to loop over
kk=0

for kk in np.arange(0,it): 
    #declaring the subplots 
    fig,axes=plt.subplots(nrows=3,ncols=4,sharex='col',sharey='row')
    #transforming axes in a usable list
    axe_list=[item for sublist in axes for item in sublist]

    # checking that I don't run out of bond
    if (12*kk+12<np.size(warDf)):
        k=0 
        # plotting each graph in its corresponding subplot
        for k in np.arange(0,12):                

            ax=axe_list.pop(0)
            ax.plot(time,meanDf.iloc[:,12*kk+k],label=(meanDf.columns[12*kk+k]),color='blue')
            ax.plot(time,pcmean,color='green')
            ax.plot(time,ncmean,color='red')
            ax.set_ylabel('fluorescence')
            ax.set_xlabel('time/ (s)')
            ax.legend()
    else: # better option??
        k=0
        s2=np.size(warDf)-12*kk
        for k in np.arange(0,s2):
            ax=axe_list.pop(0)
            ax.plot(time,meanDf.iloc[:,12*kk+k],label=(meanDf.columns[12*kk+k]),color='blue')
            ax.plot(time,pcmean,color='green')
            ax.plot(time,ncmean,color='red')
            ax.set_ylabel('fluorescence')
            ax.set_xlabel('time/ (s)')
            ax.legend()

plt.show()

您可以使用 min() 函数。将整个 if/else 替换为:

k=0 # note: you don't have to pre-define k here

s2 = min(np.size(warDf) - 12 * kk, 12) # new part

for k in np.arange(0,s2): # the rest is the same as in the body of the else
    ax=axe_list.pop(0)
    ax.plot(time,meanDf.iloc[:,12*kk+k],label=(meanDf.columns[12*kk+k]),color='blue')
    ax.plot(time,pcmean,color='green')
    ax.plot(time,ncmean,color='red')
    ax.set_ylabel('fluorescence')
    ax.set_xlabel('time/ (s)')
    ax.legend()

说明

您目前有

if (12 * kk + 12 < np.size(warDf)):
    s2 = 12 # define s2 as a variable here as well
    for k in np.arange(0, s2):
        # ...
else:
    s2 = np.size(warDf) - 12 * kk 
    for k in np.arrange(0, s2):
        # ...

重新排列第一个 if,我们可以得到:

if (12 < np.size(warDf) - 12 * kk):
    s2 = 12
    # ...
else:
    s2 = np.size(warDf) - 12 * kk
    # ...

现在可以看到if右边和s2的赋值是一样的。如果 12 小于,则使用 12。否则,使用 np.size(warDf) - 12 * kk。这是min().

的定义