具有给定值的离散概率分布图

Discrete probability distribution plot with given values

首先,我不会自己画图形。因为,不幸的是我没有电脑和数学软件..我不知道如何使用这些软件。

我需要创建以下值的离散概率分布图。

我试过Wolfram Alpha(作为一个在线软件),但是做不到,因为值的个数太长了。

示例:

我想建立一个类似于以下分布函数图的图:

P_1(x)={ 3/42,3/42,4/42,3/42,4/42,5/42,3/42,3/42,1/42,2/42,2/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,1/42,1/42,2/42,2/42,2/42,1/42}

P_2(x)={ 4/170,6/170,8/170,6/170,8/170,11/170,8/170,9/170,6/170,6/170,8/170,4/170,7/170,3/170,5/170,3/170,3/170,3/170,0/170,1/170,0/170,1/170,2/170,2/170,1/170,0/170,1/170,1/170,1/170,2/170,2/170,2/170,2/170,2/170,2/170,2/170,3/170,3/170,4/170,5/170,4/170,6/170,4/170,4/170,1/170,2/170,1/170,0/170,0/170,0/170,0/170,1/170}

P_3(x)={ 5/682,9/682,13/682,15/682,20/682,25/682,25/682,34/682,21/682,26/682,24/682,21/682,26/682,19/682,21/682,22/682,14/682,20/682,10/682,13/682,10/682,6/682,11/682,6/682,8/682,3/682,4/682,5/682,5/682,8/682,5/682,9/682,7/682,9/682,10/682,5/682,5/682,5/682,7/682,11/682,11/682,15/682,13/682,16/682,11/682,15/682,18/682,9/682,9/682,3/682,6/682,10/682,5/682,4/682,2/682,2/682,1/682,0/682,1/682,0/682,2/682,1/682,1/682,3/682,1/682,1/682}

P_4(x)={ 6/2730,12/2730,22/2730,28/2730,41/2730,55/2730,58/2730,80/2730,68/2730,91/2730,84/2730,72/2730,87/2730,65/2730,82/2730,89/2730,61/2730,80/2730,51/2730,66/2730,49/2730,47/2730,61/2730,39/2730,50/2730,21/2730,31/2730,34/2730,24/2730,40/2730,23/2730,36/2730,34/2730,31/2730,44/2730,27/2730,33/2730,18/2730,25/2730,37/2730,33/2730,50/2730,35/2730,52/2730,40/2730,52/2730,66/2730,45/2730,48/2730,32/2730,34/2730,43/2730,32/2730,37/2730,22/2730,29/2730,21/2730,15/2730,22/2730,10/2730,18/2730,11/2730,15/2730,22/2730,10/2730,13/2730,1/2730,4/2730,4/2730,1/2730,2/2730,1/2730,2/2730,0/2730,1/2730,2/2730,0/2730,1/2730,1/2730,0/2730,0/2730,0/2730,0/2730,0/2730,0/2730,0/2730,1/2730}

P_5(x)={ 7/10922,17/10922,33/10922,47/10922,77/10922,108/10922,126/10922,179/10922,167/10922,226/10922,245/10922,235/10922,308/10922,224/10922,303/10922,300/10922,263/10922,318/10922,216/10922,278/10922,204/10922,238/10922,282/10922,180/10922,229/10922,138/10922,185/10922,211/10922,145/10922,194/10922,122/10922,168/10922,137/10922,136/10922,168/10922,113/10922,150/10922,93/10922,123/10922,132/10922,118/10922,165/10922,124/10922,174/10922,156/10922,167/10922,215/10922,150/10922,204/10922,134/10922,167/10922,208/10922,127/10922,180/10922,107/10922,145/10922,119/10922,97/10922,131/10922,81/10922,100/10922,63/10922,78/10922,99/10922,61/10922,83/10922,43/10922,56/10922,58/10922,35/10922,46/10922,19/10922,26/10922,13/10922,14/10922,18/10922,7/10922,8/10922,4/10922,8/10922,9/10922,3/10922,6/10922,2/10922,6/10922,4/10922,6/10922,11/10922,5/10922,6/10922,2/10922,3/10922,6/10922,2/10922,4/10922,4/10922,2/10922,1/10922,2/10922,2/10922,1/10922,2/10922}

P_6(x)={ 8/43690,22/43690,48/43690,77/43690,133/43690,196/43690,262/43690,391/43690,396/43690,550/43690,607/43690,656/43690,877/43690,689/43690,919/43690,922/43690,904/43690,1104/43690,823/43690,1058/43690,806/43690,919/43690,1120/43690,792/43690,1028/43690,647/43690,876/43690,930/43690,721/43690,876/43690,585/43690,741/43690,621/43690,615/43690,777/43690,528/43690,695/43690,420/43690,544/43690,608/43690,488/43690,656/43690,458/43690,620/43690,588/43690,591/43690,775/43690,545/43690,761/43690,507/43690,666/43690,818/43690,551/43690,735/43690,466/43690,626/43690,560/43690,505/43690,659/43690,387/43690,509/43690,307/43690,401/43690,541/43690,314/43690,438/43690,259/43690,339/43690,361/43690,234/43690,318/43690,154/43690,214/43690,125/43690,161/43690,196/43690,90/43690,125/43690,61/43690,95/43690,114/43690,58/43690,88/43690,39/43690,65/43690,36/43690,43/43690,72/43690,41/43690,49/43690,28/43690,41/43690,50/43690,27/43690,32/43690,16/43690,25/43690,12/43690,20/43690,28/43690,11/43690,13/43690,6/43690,9/43690,13/43690,2/43690,6/43690,2/43690,2/43690,3/43690,3/43690,10/43690,3/43690,7/43690,2/43690,3/43690,4/43690,2/43690,4/43690,0/43690,1/43690,1/43690,1/43690,1/43690,1/43690,0/43690,0/43690,0/43690,1/43690}

P_7(x)={ 9/174762,27/174762,67/174762,118/174762,220/174762,348/174762,486/174762,771/174762,825/174762,1214/174762,1373/174762,1633/174762,2257/174762,1906/174762,2554/174762,2557/174762,2737/174762,3353/174762,2728/174762,3572/174762,2798/174762,3278/174762,3935/174762,3040/174762,3969/174762,2675/174762,3469/174762,3713/174762,2907/174762,3630/174762,2491/174762,3269/174762,2647/174762,2733/174762,3408/174762,2315/174762,3043/174762,1931/174762,2584/174762,2710/174762,2155/174762,2789/174762,1904/174762,2566/174762,2473/174762,2331/174762,3061/174762,2134/174762,2871/174762,1939/174762,2595/174762,3186/174762,2249/174762,3031/174762,1967/174762,2575/174762,2440/174762,2253/174762,2909/174762,1827/174762,2398/174762,1549/174762,1992/174762,2595/174762,1593/174762,2098/174762,1248/174762,1661/174762,1819/174762,1347/174762,1741/174762,991/174762,1320/174762,792/174762,964/174762,1310/174762,710/174762,939/174762,507/174762,694/174762,826/174762,473/174762,651/174762,341/174762,468/174762,264/174762,328/174762,494/174762,253/174762,357/174762,179/174762,263/174762,348/174762,180/174762,273/174762,130/174762,193/174762,133/174762,157/174762,209/174762,100/174762,138/174762,63/174762,91/174762,130/174762,58/174762,79/174762,40/174762,67/174762,58/174762,53/174762,77/174762,40/174762,53/174762,24/174762,32/174762,48/174762,22/174762,35/174762,20/174762,25/174762,28/174762,14/174762,17/174762,11/174762,15/174762,5/174762,8/174762,17/174762,7/174762,8/174762,2/174762,2/174762,4/174762,4/174762,8/174762,2/174762,2/174762,0/174762,1/174762,3/174762,1/174762,3/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,2/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,1/174762,1/174762}

P_8(x)={ 10/699050,34/699050,90/699050,176/699050,350/699050,577/699050,871/699050,1436/699050,1657/699050,2534/699050,2966/699050,3764/699050,5358/699050,4882/699050,6698/699050,6791/699050,7702/699050,9604/699050,8231/699050,10947/699050,8918/699050,10913/699050,12958/699050,10509/699050,13828/699050,9786/699050,12794/699050,13566/699050,11358/699050,14039/699050,9970/699050,13110/699050,10714/699050,11362/699050,14112/699050,9696/699050,12748/699050,8299/699050,10977/699050,11669/699050,9297/699050,11941/699050,8009/699050,10755/699050,10446/699050,9502/699050,12403/699050,8392/699050,11276/699050,7651/699050,10182/699050,12325/699050,9126/699050,12174/699050,8067/699050,10627/699050,10042/699050,9292/699050,12137/699050,7975/699050,10516/699050,6945/699050,8760/699050,11373/699050,7282/699050,9587/699050,5943/699050,7862/699050,8529/699050,6461/699050,8474/699050,5139/699050,6852/699050,4337/699050,5341/699050,6935/699050,4055/699050,5350/699050,3019/699050,4024/699050,4776/699050,3023/699050,4058/699050,2251/699050,3039/699050,1851/699050,2247/699050,3039/699050,1720/699050,2289/699050,1249/699050,1742/699050,2273/699050,1290/699050,1830/699050,987/699050,1372/699050,972/699050,978/699050,1372/699050,767/699050,1038/699050,538/699050,722/699050,994/699050,529/699050,710/699050,367/699050,535/699050,509/699050,393/699050,589/699050,316/699050,401/699050,226/699050,297/699050,389/699050,197/699050,290/699050,143/699050,202/699050,226/699050,147/699050,211/699050,103/699050,140/699050,79/699050,101/699050,142/699050,67/699050,106/699050,51/699050,67/699050,75/699050,46/699050,65/699050,32/699050,45/699050,36/699050,42/699050,55/699050,24/699050,34/699050,11/699050,12/699050,25/699050,9/699050,21/699050,8/699050,17/699050,10/699050,9/699050,11/699050,5/699050,14/699050,5/699050,7/699050,6/699050,3/699050,7/699050,4/699050,5/699050,7/699050,6/699050,6/699050,3/699050,2/699050,0/699050,1/699050,2/699050,0/699050,2/699050,2/699050,3/699050,2/699050,2/699050,0/699050,0/699050,0/699050,0/699050,1/699050,1/699050,0/699050,0/699050,0/699050,1/699050,2/699050,1/699050,2/699050,0/699050,0/699050,0/699050,0/699050,1/699050,1/699050,2/699050}

P_9(x)={ 11/2796202,41/2796202,118/2796202,251/2796202,532/2796202,924/2796202,1500/2796202,2580/2796202,3164/2796202,5018/2796202,6108/2796202,8193/2796202,12030/2796202,11599/2796202,16410/2796202,16947/2796202,20329/2796202,25638/2796202,23361/2796202,31525/2796202,26494/2796202,33543/2796202,39633/2796202,33833/2796202,44866/2796202,33020/2796202,43543/2796202,45974/2796202,41030/2796202,50612/2796202,37388/2796202,49151/2796202,40472/2796202,44081/2796202,54221/2796202,38847/2796202,51156/2796202,33921/2796202,44680/2796202,48127/2796202,38710/2796202,48902/2796202,33436/2796202,44407/2796202,43373/2796202,39062/2796202,50116/2796202,34268/2796202,45652/2796202,30338/2796202,40610/2796202,47920/2796202,36278/2796202,48435/2796202,32356/2796202,42939/2796202,41366/2796202,37675/2796202,49334/2796202,33062/2796202,43626/2796202,29838/2796202,37507/2796202,48140/2796202,31771/2796202,42095/2796202,26739/2796202,35539/2796202,37571/2796202,29438/2796202,38388/2796202,24218/2796202,32092/2796202,21490/2796202,26087/2796202,33871/2796202,20799/2796202,27405/2796202,16238/2796202,21484/2796202,25225/2796202,16608/2796202,22120/2796202,12875/2796202,17174/2796202,10980/2796202,13179/2796202,17537/2796202,10097/2796202,13580/2796202,7732/2796202,10423/2796202,13393/2796202,7912/2796202,10700/2796202,6146/2796202,8242/2796202,6077/2796202,6224/2796202,8464/2796202,4728/2796202,6495/2796202,3578/2796202,4873/2796202,6457/2796202,3565/2796202,4909/2796202,2640/2796202,3644/2796202,3535/2796202,2742/2796202,3829/2796202,2090/2796202,2847/2796202,1587/2796202,2128/2796202,2914/2796202,1549/2796202,2116/2796202,1147/2796202,1600/2796202,1751/2796202,1134/2796202,1596/2796202,838/2796202,1190/2796202,645/2796202,836/2796202,1169/2796202,600/2796202,853/2796202,452/2796202,668/2796202,780/2796202,409/2796202,581/2796202,292/2796202,423/2796202,278/2796202,324/2796202,474/2796202,242/2796202,334/2796202,158/2796202,234/2796202,327/2796202,166/2796202,234/2796202,114/2796202,165/2796202,110/2796202,107/2796202,171/2796202,84/2796202,138/2796202,66/2796202,86/2796202,114/2796202,56/2796202,78/2796202,41/2796202,57/2796202,70/2796202,49/2796202,63/2796202,26/2796202,49/2796202,25/2796202,36/2796202,51/2796202,14/2796202,22/2796202,12/2796202,18/2796202,23/2796202,20/2796202,20/2796202,6/2796202,11/2796202,4/2796202,10/2796202,15/2796202,9/2796202,10/2796202,5/2796202,8/2796202,11/2796202,6/2796202,10/2796202,6/2796202,9/2796202,5/2796202,8/2796202,14/2796202,7/2796202,14/2796202,7/2796202,7/2796202,5/2796202,1/2796202,5/2796202,1/2796202,2/2796202,4/2796202,1/2796202,3/2796202,3/2796202,3/2796202,1/2796202,3/2796202,3/2796202,0/2796202,1/2796202,0/2796202,0/2796202,1/2796202,1/2796202,1/2796202,0/2796202,0/2796202,0/2796202,1/2796202}

其中,x={1,2,3,4,5,.....{up to the number of given values}

其实这道题是一道数学题:这些概率分布模拟了哪些数学函数?但由于我不会制作图形,所以无法回答..我只是需要帮助来制作图形。

非常感谢您的帮助..

我需要样图:

我在不使用 Microsoft Excel 图表的情况下正确绘制曲线时遇到了同样的问题,我使用了 charjs,您可以在 https://www.chartjs.org

这个工具非常适合我的工作。

我的所有曲线数据(X/Y 坐标)都放在 javascript 文件中,我将其包含在 html 文件的开头。但是在您的情况下,您可以直接在 html 文件的 JavaScript 部分简单地复制(使用 Paste/Copy)您的变量!

您甚至可以找到一些 javascript 代码来提取 PNG 文件中的 HTML 图像,您可以将其放入其他编辑器程序中。

我看到你有一台电脑,是android。

所以如果你要在网上做图,我建议你看看下面的2个links

https://webdesign.tutsplus.com/tutorials/how-to-create-a-simple-line-chart-with-chartjs--cms-28129

https://codepen.io/tutsplus/pen/JRVgRB

CodePen 站点是一个允许您在知道 HTML、JavaScript 和 CSS 的 Web 上定义图形的网站。

但是对于你的情况,我认为更好的办法是在 "CodePen" "chartjs" 中找到一些关于 Google 的例子。 我已经测试过,我发现了很多 CodePen for Chartjs 的例子。

此 link 显示大量 chartjs 图表示例。 https://codepen.X/tag/chartjs

制作 link 的 Paste/Copy 并将 X 替换为 "io" 以解决请求某些代码的 Whosebug 限制

我知道您没有编码方面的经验,但您或许可以尝试使用 CodePen 用户界面使用已编写的代码修改代码。

[完全重新编辑] OP 编辑​​后将更多图表放入单个 SVG

好吧,您可以使用 SVG 作为图表(您只需要文本编辑器和 SVG 查看器,例如 Internet 浏览器)。您只需要对数据稍作修改,然后使用脚本或手动构建 SVG 路径。计算通用比例并相应地调整每个 graph/path 的变换。这是 VCL/C++ 脚本(可以忽略 VCL 的东西我只使用 AnsiString 类型进行文本操作和 Memo 简单保存文件的文本):

//---------------------------------------------------------------------------
AnsiString generate_svg(int *P)
    {
    AnsiString svg,path;
    float xm,ym,dm,f; int i,ix,c,d,x,y;
    const AnsiString col[]=
        {
        "aliceblue"           ,
        "antiquewhite"        ,
        "aqua"                ,
        "aquamarine"          ,
        "azure"               ,
        "beige"               ,
        "bisque"              ,
        "black"               ,
        "blanchedalmond"      ,
        "blue"                ,
        "blueviolet"          ,
        "brown"               ,
        "burlywood"           ,
        "cadetblue"           ,
        "chartreuse"          ,
        "chocolate"           ,
        "coral"               ,
        "lightpink"           ,
        "lightsalmon"         ,
        "lightseagreen"       ,
        "lightskyblue"        ,
        "lightslategray"      ,
        "lightslategrey"      ,
        "lightsteelblue"      ,
        "lightyellow"         ,
        "lime"                ,
        "limegreen"           ,
        "linen"               ,
        "magenta"             ,
        "maroon"              ,
        "mediumaquamarine"    ,
        "mediumblue"          ,
        "mediumorchid"        ,
        "cornflowerblue"      ,
        "cornsilk"            ,
        "crimson"             ,
        "cyan"                ,
        "darkblue"            ,
        "darkcyan"            ,
        "darkgoldenrod"       ,
        "darkgray"            ,
        "darkgreen"           ,
        "darkgrey"            ,
        "darkkhaki"           ,
        "darkmagenta"         ,
        "darkolivegreen"      ,
        "darkorange"          ,
        "darkorchid"          ,
        "darkred"             ,
        "darksalmon"          ,
        "darkseagreen"        ,
        "darkslateblue"       ,
        "darkslategray"       ,
        "darkslategrey"       ,
        "darkturquoise"       ,
        "darkviolet"          ,
        "deeppink"            ,
        "deepskyblue"         ,
        "dimgray"             ,
        "dimgrey"             ,
        "dodgerblue"          ,
        "firebrick"           ,
        "floralwhite"         ,
        "forestgreen"         ,
        "fuchsia"             ,
        "gainsboro"           ,
        "ghostwhite"          ,
        "gold"                ,
        "goldenrod"           ,
        "gray"                ,
        "grey"                ,
        "green"               ,
        "greenyellow"         ,
        "honeydew"            ,
        "hotpink"             ,
        "indianred"           ,
        "indigo"              ,
        "ivory"               ,
        "khaki"               ,
        "lavender"            ,
        "lavenderblush"       ,
        "mediumpurple"        ,
        "mediumseagreen"      ,
        "mediumslateblue"     ,
        "mediumspringgreen"   ,
        "mediumturquoise"     ,
        "mediumvioletred"     ,
        "midnightblue"        ,
        "mintcream"           ,
        "mistyrose"           ,
        "moccasin"            ,
        "navajowhite"         ,
        "navy"                ,
        "oldlace"             ,
        "olive"               ,
        "olivedrab"           ,
        "orange"              ,
        "orangered"           ,
        "orchid"              ,
        "palegoldenrod"       ,
        "palegreen"           ,
        "paleturquoise"       ,
        "palevioletred"       ,
        "papayawhip"          ,
        "peachpuff"           ,
        "peru"                ,
        "pink"                ,
        "plum"                ,
        "powderblue"          ,
        "purple"              ,
        "red"                 ,
        "rosybrown"           ,
        "royalblue"           ,
        "saddlebrown"         ,
        "salmon"              ,
        "sandybrown"          ,
        "seagreen"            ,
        "seashell"            ,
        "sienna"              ,
        "silver"              ,
        "skyblue"             ,
        "slateblue"           ,
        "slategray"           ,
        "slategrey"           ,
        "snow"                ,
        "springgreen"         ,
        "steelblue"           ,
        "tan"                 ,
        "teal"                ,
        "lawngreen"           ,
        "lemonchiffon"        ,
        "lightblue"           ,
        "lightcoral"          ,
        "lightcyan"           ,
        "lightgoldenrodyellow",
        "lightgray"           ,
        "lightgreen"          ,
        "lightgrey"           ,
        "thistle"             ,
        "tomato"              ,
        "turquoise"           ,
        "violet"              ,
        "wheat"               ,
        "white"               ,
        "whitesmoke"          ,
        "yellow"              ,
        "yellowgreen"         ,
        };

    // find max x,y,d (for computation of global transform)
    for (xm=0,ym=0,dm=0,i=0,ix=0;P[i]>=0;ix++,i++)  // process all graphs in P[]
        {
        d=P[i]; i++;            // divider
        if (dm<d) dm=d;         // global max divider
        for (x=0,y=0;P[i]>=0;i++,x++)   // process single graph
         if (y<P[i]) y=P[i];    // local max y
        f=float(y)/float(d);
        if (ym<f) ym=f;         // global max y
        if (xm<x) xm=x;         // global max x
        }
    // [SVG header]
    svg ="<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"-100 -100 1100 1100\">\r\n";
    // [support gfx] <0,1000> coordinates
    svg+=" <g fill=\"none\" stroke-width=\"1px\">\r\n";
    svg+="  <rect stroke=\"black\" x=\"0\" y=\"0\" height=\"1000\" width=\"1000\"/>\r\n";
    // [graphs]
    for (i=0,ix=0;P[i]>=0;ix++,i++) // process all graphs in P[]
        {
        f=P[i]; i++;            // divider
        f*=2.0*ym;              // scale
        svg+="  <path stroke=\""+col[ix]+"\"";
        svg+=AnsiString().sprintf(" transform=\"matrix(%.6f,%.6f,%.6f,%.6f,%.6f,%.6f)\"",1000.0/xm,0.0,0.0,-1000.0/f,0.0,1000.0);
        svg+=" d=\"M 0 0"; // Move to (0,0) absolute
        for (x=0;P[i]>=0;i++,x++)   // process single graph
         svg+=AnsiString().sprintf(" L %i %i",x,P[i]); // Line to (x,y) absolute
        svg+="\"/>\r\n";
        }
    svg+=" </g>\r\n";
    svg+="</svg>\r\n";
    return svg;
    }
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner):TForm(Owner)
    {
    int P[]=
        {
    //  divider,y0,y1,y2,....,-1
             42,3,3,4,3,4,5,3,3,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,1,-1,
            170,4,6,8,6,8,11,8,9,6,6,8,4,7,3,5,3,3,3,0,1,0,1,2,2,1,0,1,1,1,2,2,2,2,2,2,2,3,3,4,5,4,6,4,4,1,2,1,0,0,0,0,1,-1,
             682,5,9,13,15,20,25,25,34,21,26,24,21,26,19,21,22,14,20,10,13,10,6,11,6,8,3,4,5,5,8,5,9,7,9,10,5,5,5,7,11,11,15,13,16,11,15,18,9,9,3,6,10,5,4,2,2,1,0,1,0,2,1,1,3,1,1,-1,
           2730,6,12,22,28,41,55,58,80,68,91,84,72,87,65,82,89,61,80,51,66,49,47,61,39,50,21,31,34,24,40,23,36,34,31,44,27,33,18,25,37,33,50,35,52,40,52,66,45,48,32,34,43,32,37,22,29,21,15,22,10,18,11,15,22,10,13,1,4,4,1,2,1,2,0,1,2,0,1,1,0,0,0,0,0,0,0,1,-1,
          10922,7,17,33,47,77,108,126,179,167,226,245,235,308,224,303,300,263,318,216,278,204,238,282,180,229,138,185,211,145,194,122,168,137,136,168,113,150,93,123,132,118,165,124,174,156,167,215,150,204,134,167,208,127,180,107,145,119,97,131,81,100,63,78,99,61,83,43,56,58,35,46,19,26,13,14,18,7,8,4,8,9,3,6,2,6,4,6,11,5,6,2,3,6,2,4,4,2,1,2,2,1,2,-1,
          43690,8,22,48,77,133,196,262,391,396,550,607,656,877,689,919,922,904,1104,823,1058,806,919,1120,792,1028,647,876,930,721,876,585,741,621,615,777,528,695,420,544,608,488,656,458,620,588,591,775,545,761,507,666,818,551,735,466,626,560,505,659,387,509,307,401,541,314,438,259,339,361,234,318,154,214,125,161,196,90,125,61,95,114,58,88,39,65,36,43,72,41,49,28,41,50,27,32,16,25,12,20,28,11,13,6,9,13,2,6,2,2,3,3,10,3,7,2,3,4,2,4,0,1,1,1,1,1,0,0,0,1,-1,
         174762,9,27,67,118,220,348,486,771,825,1214,1373,1633,2257,1906,2554,2557,2737,3353,2728,3572,2798,3278,3935,3040,3969,2675,3469,3713,2907,3630,2491,3269,2647,2733,3408,2315,3043,1931,2584,2710,2155,2789,1904,2566,2473,2331,3061,2134,2871,1939,2595,3186,2249,3031,1967,2575,2440,2253,2909,1827,2398,1549,1992,2595,1593,2098,1248,1661,1819,1347,1741,991,1320,792,964,1310,710,939,507,694,826,473,651,341,468,264,328,494,253,357,179,263,348,180,273,130,193,133,157,209,100,138,63,91,130,58,79,40,67,58,53,77,40,53,24,32,48,22,35,20,25,28,14,17,11,15,5,8,17,7,8,2,2,4,4,8,2,2,0,1,3,1,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,
         699050,10,34,90,176,350,577,871,1436,1657,2534,2966,3764,5358,4882,6698,6791,7702,9604,8231,10947,8918,10913,12958,10509,13828,9786,12794,13566,11358,14039,9970,13110,10714,11362,14112,9696,12748,8299,10977,11669,9297,11941,8009,10755,10446,9502,12403,8392,11276,7651,10182,12325,9126,12174,8067,10627,10042,9292,12137,7975,10516,6945,8760,11373,7282,9587,5943,7862,8529,6461,8474,5139,6852,4337,5341,6935,4055,5350,3019,4024,4776,3023,4058,2251,3039,1851,2247,3039,1720,2289,1249,1742,2273,1290,1830,987,1372,972,978,1372,767,1038,538,722,994,529,710,367,535,509,393,589,316,401,226,297,389,197,290,143,202,226,147,211,103,140,79,101,142,67,106,51,67,75,46,65,32,45,36,42,55,24,34,11,12,25,9,21,8,17,10,9,11,5,14,5,7,6,3,7,4,5,7,6,6,3,2,0,1,2,0,2,2,3,2,2,0,0,0,0,1,1,0,0,0,1,2,1,2,0,0,0,0,1,1,2,-1,
        2796202,11,41,118,251,532,924,1500,2580,3164,5018,6108,8193,12030,11599,16410,16947,20329,25638,23361,31525,26494,33543,39633,33833,44866,33020,43543,45974,41030,50612,37388,49151,40472,44081,54221,38847,51156,33921,44680,48127,38710,48902,33436,44407,43373,39062,50116,34268,45652,30338,40610,47920,36278,48435,32356,42939,41366,37675,49334,33062,43626,29838,37507,48140,31771,42095,26739,35539,37571,29438,38388,24218,32092,21490,26087,33871,20799,27405,16238,21484,25225,16608,22120,12875,17174,10980,13179,17537,10097,13580,7732,10423,13393,7912,10700,6146,8242,6077,6224,8464,4728,6495,3578,4873,6457,3565,4909,2640,3644,3535,2742,3829,2090,2847,1587,2128,2914,1549,2116,1147,1600,1751,1134,1596,838,1190,645,836,1169,600,853,452,668,780,409,581,292,423,278,324,474,242,334,158,234,327,166,234,114,165,110,107,171,84,138,66,86,114,56,78,41,57,70,49,63,26,49,25,36,51,14,22,12,18,23,20,20,6,11,4,10,15,9,10,5,8,11,6,10,6,9,5,8,14,7,14,7,7,5,1,5,1,2,4,1,3,3,3,1,3,3,0,1,0,0,1,1,1,0,0,0,1,-1,
             -1
        };
    Memo1->Lines->Text=generate_svg(P);
    Memo1->Lines->SaveToFile("out.svg");
    }
//---------------------------------------------------------------------------

生成 SVG:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="-100 -100 1100 1100">
 <g fill="none" stroke-width="1px">
  <rect stroke="black" x="0" y="0" height="1000" width="1000"/>
  <path stroke="aliceblue" transform="matrix(4.504505,0.000000,0.000000,-100.000000,0.000000,1000.000000)" d="M 0 0 L 0 3 L 1 3 L 2 4 L 3 3 L 4 4 L 5 5 L 6 3 L 7 3 L 8 1 L 9 2 L 10 2 L 11 0 L 12 0 L 13 0 L 14 0 L 15 0 L 16 0 L 17 0 L 18 0 L 19 0 L 20 0 L 21 0 L 22 0 L 23 0 L 24 0 L 25 0 L 26 0 L 27 0 L 28 0 L 29 0 L 30 0 L 31 0 L 32 0 L 33 0 L 34 0 L 35 0 L 36 1 L 37 1 L 38 2 L 39 2 L 40 2 L 41 1"/>
  <path stroke="antiquewhite" transform="matrix(4.504505,0.000000,0.000000,-24.705881,0.000000,1000.000000)" d="M 0 0 L 0 4 L 1 6 L 2 8 L 3 6 L 4 8 L 5 11 L 6 8 L 7 9 L 8 6 L 9 6 L 10 8 L 11 4 L 12 7 L 13 3 L 14 5 L 15 3 L 16 3 L 17 3 L 18 0 L 19 1 L 20 0 L 21 1 L 22 2 L 23 2 L 24 1 L 25 0 L 26 1 L 27 1 L 28 1 L 29 2 L 30 2 L 31 2 L 32 2 L 33 2 L 34 2 L 35 2 L 36 3 L 37 3 L 38 4 L 39 5 L 40 4 L 41 6 L 42 4 L 43 4 L 44 1 L 45 2 L 46 1 L 47 0 L 48 0 L 49 0 L 50 0 L 51 1"/>
  <path stroke="aqua" transform="matrix(4.504505,0.000000,0.000000,-6.158358,0.000000,1000.000000)" d="M 0 0 L 0 5 L 1 9 L 2 13 L 3 15 L 4 20 L 5 25 L 6 25 L 7 34 L 8 21 L 9 26 L 10 24 L 11 21 L 12 26 L 13 19 L 14 21 L 15 22 L 16 14 L 17 20 L 18 10 L 19 13 L 20 10 L 21 6 L 22 11 L 23 6 L 24 8 L 25 3 L 26 4 L 27 5 L 28 5 L 29 8 L 30 5 L 31 9 L 32 7 L 33 9 L 34 10 L 35 5 L 36 5 L 37 5 L 38 7 L 39 11 L 40 11 L 41 15 L 42 13 L 43 16 L 44 11 L 45 15 L 46 18 L 47 9 L 48 9 L 49 3 L 50 6 L 51 10 L 52 5 L 53 4 L 54 2 L 55 2 L 56 1 L 57 0 L 58 1 L 59 0 L 60 2 L 61 1 L 62 1 L 63 3 L 64 1 L 65 1"/>
  <path stroke="aquamarine" transform="matrix(4.504505,0.000000,0.000000,-1.538462,0.000000,1000.000000)" d="M 0 0 L 0 6 L 1 12 L 2 22 L 3 28 L 4 41 L 5 55 L 6 58 L 7 80 L 8 68 L 9 91 L 10 84 L 11 72 L 12 87 L 13 65 L 14 82 L 15 89 L 16 61 L 17 80 L 18 51 L 19 66 L 20 49 L 21 47 L 22 61 L 23 39 L 24 50 L 25 21 L 26 31 L 27 34 L 28 24 L 29 40 L 30 23 L 31 36 L 32 34 L 33 31 L 34 44 L 35 27 L 36 33 L 37 18 L 38 25 L 39 37 L 40 33 L 41 50 L 42 35 L 43 52 L 44 40 L 45 52 L 46 66 L 47 45 L 48 48 L 49 32 L 50 34 L 51 43 L 52 32 L 53 37 L 54 22 L 55 29 L 56 21 L 57 15 L 58 22 L 59 10 L 60 18 L 61 11 L 62 15 L 63 22 L 64 10 L 65 13 L 66 1 L 67 4 L 68 4 L 69 1 L 70 2 L 71 1 L 72 2 L 73 0 L 74 1 L 75 2 L 76 0 L 77 1 L 78 1 L 79 0 L 80 0 L 81 0 L 82 0 L 83 0 L 84 0 L 85 0 L 86 1"/>
  <path stroke="azure" transform="matrix(4.504505,0.000000,0.000000,-0.384545,0.000000,1000.000000)" d="M 0 0 L 0 7 L 1 17 L 2 33 L 3 47 L 4 77 L 5 108 L 6 126 L 7 179 L 8 167 L 9 226 L 10 245 L 11 235 L 12 308 L 13 224 L 14 303 L 15 300 L 16 263 L 17 318 L 18 216 L 19 278 L 20 204 L 21 238 L 22 282 L 23 180 L 24 229 L 25 138 L 26 185 L 27 211 L 28 145 L 29 194 L 30 122 L 31 168 L 32 137 L 33 136 L 34 168 L 35 113 L 36 150 L 37 93 L 38 123 L 39 132 L 40 118 L 41 165 L 42 124 L 43 174 L 44 156 L 45 167 L 46 215 L 47 150 L 48 204 L 49 134 L 50 167 L 51 208 L 52 127 L 53 180 L 54 107 L 55 145 L 56 119 L 57 97 L 58 131 L 59 81 L 60 100 L 61 63 L 62 78 L 63 99 L 64 61 L 65 83 L 66 43 L 67 56 L 68 58 L 69 35 L 70 46 L 71 19 L 72 26 L 73 13 L 74 14 L 75 18 L 76 7 L 77 8 L 78 4 L 79 8 L 80 9 L 81 3 L 82 6 L 83 2 L 84 6 L 85 4 L 86 6 L 87 11 L 88 5 L 89 6 L 90 2 L 91 3 L 92 6 L 93 2 L 94 4 L 95 4 L 96 2 L 97 1 L 98 2 L 99 2 L 100 1 L 101 2"/>
  <path stroke="beige" transform="matrix(4.504505,0.000000,0.000000,-0.096132,0.000000,1000.000000)" d="M 0 0 L 0 8 L 1 22 L 2 48 L 3 77 L 4 133 L 5 196 L 6 262 L 7 391 L 8 396 L 9 550 L 10 607 L 11 656 L 12 877 L 13 689 L 14 919 L 15 922 L 16 904 L 17 1104 L 18 823 L 19 1058 L 20 806 L 21 919 L 22 1120 L 23 792 L 24 1028 L 25 647 L 26 876 L 27 930 L 28 721 L 29 876 L 30 585 L 31 741 L 32 621 L 33 615 L 34 777 L 35 528 L 36 695 L 37 420 L 38 544 L 39 608 L 40 488 L 41 656 L 42 458 L 43 620 L 44 588 L 45 591 L 46 775 L 47 545 L 48 761 L 49 507 L 50 666 L 51 818 L 52 551 L 53 735 L 54 466 L 55 626 L 56 560 L 57 505 L 58 659 L 59 387 L 60 509 L 61 307 L 62 401 L 63 541 L 64 314 L 65 438 L 66 259 L 67 339 L 68 361 L 69 234 L 70 318 L 71 154 L 72 214 L 73 125 L 74 161 L 75 196 L 76 90 L 77 125 L 78 61 L 79 95 L 80 114 L 81 58 L 82 88 L 83 39 L 84 65 L 85 36 L 86 43 L 87 72 L 88 41 L 89 49 L 90 28 L 91 41 L 92 50 L 93 27 L 94 32 L 95 16 L 96 25 L 97 12 L 98 20 L 99 28 L 100 11 L 101 13 L 102 6 L 103 9 L 104 13 L 105 2 L 106 6 L 107 2 L 108 2 L 109 3 L 110 3 L 111 10 L 112 3 L 113 7 L 114 2 L 115 3 L 116 4 L 117 2 L 118 4 L 119 0 L 120 1 L 121 1 L 122 1 L 123 1 L 124 1 L 125 0 L 126 0 L 127 0 L 128 1"/>
  <path stroke="bisque" transform="matrix(4.504505,0.000000,0.000000,-0.024033,0.000000,1000.000000)" d="M 0 0 L 0 9 L 1 27 L 2 67 L 3 118 L 4 220 L 5 348 L 6 486 L 7 771 L 8 825 L 9 1214 L 10 1373 L 11 1633 L 12 2257 L 13 1906 L 14 2554 L 15 2557 L 16 2737 L 17 3353 L 18 2728 L 19 3572 L 20 2798 L 21 3278 L 22 3935 L 23 3040 L 24 3969 L 25 2675 L 26 3469 L 27 3713 L 28 2907 L 29 3630 L 30 2491 L 31 3269 L 32 2647 L 33 2733 L 34 3408 L 35 2315 L 36 3043 L 37 1931 L 38 2584 L 39 2710 L 40 2155 L 41 2789 L 42 1904 L 43 2566 L 44 2473 L 45 2331 L 46 3061 L 47 2134 L 48 2871 L 49 1939 L 50 2595 L 51 3186 L 52 2249 L 53 3031 L 54 1967 L 55 2575 L 56 2440 L 57 2253 L 58 2909 L 59 1827 L 60 2398 L 61 1549 L 62 1992 L 63 2595 L 64 1593 L 65 2098 L 66 1248 L 67 1661 L 68 1819 L 69 1347 L 70 1741 L 71 991 L 72 1320 L 73 792 L 74 964 L 75 1310 L 76 710 L 77 939 L 78 507 L 79 694 L 80 826 L 81 473 L 82 651 L 83 341 L 84 468 L 85 264 L 86 328 L 87 494 L 88 253 L 89 357 L 90 179 L 91 263 L 92 348 L 93 180 L 94 273 L 95 130 L 96 193 L 97 133 L 98 157 L 99 209 L 100 100 L 101 138 L 102 63 L 103 91 L 104 130 L 105 58 L 106 79 L 107 40 L 108 67 L 109 58 L 110 53 L 111 77 L 112 40 L 113 53 L 114 24 L 115 32 L 116 48 L 117 22 L 118 35 L 119 20 L 120 25 L 121 28 L 122 14 L 123 17 L 124 11 L 125 15 L 126 5 L 127 8 L 128 17 L 129 7 L 130 8 L 131 2 L 132 2 L 133 4 L 134 4 L 135 8 L 136 2 L 137 2 L 138 0 L 139 1 L 140 3 L 141 1 L 142 3 L 143 0 L 144 0 L 145 0 L 146 0 L 147 0 L 148 0 L 149 2 L 150 0 L 151 0 L 152 0 L 153 0 L 154 0 L 155 0 L 156 0 L 157 0 L 158 0 L 159 0 L 160 0 L 161 0 L 162 1 L 163 1"/>
  <path stroke="black" transform="matrix(4.504505,0.000000,0.000000,-0.006008,0.000000,1000.000000)" d="M 0 0 L 0 10 L 1 34 L 2 90 L 3 176 L 4 350 L 5 577 L 6 871 L 7 1436 L 8 1657 L 9 2534 L 10 2966 L 11 3764 L 12 5358 L 13 4882 L 14 6698 L 15 6791 L 16 7702 L 17 9604 L 18 8231 L 19 10947 L 20 8918 L 21 10913 L 22 12958 L 23 10509 L 24 13828 L 25 9786 L 26 12794 L 27 13566 L 28 11358 L 29 14039 L 30 9970 L 31 13110 L 32 10714 L 33 11362 L 34 14112 L 35 9696 L 36 12748 L 37 8299 L 38 10977 L 39 11669 L 40 9297 L 41 11941 L 42 8009 L 43 10755 L 44 10446 L 45 9502 L 46 12403 L 47 8392 L 48 11276 L 49 7651 L 50 10182 L 51 12325 L 52 9126 L 53 12174 L 54 8067 L 55 10627 L 56 10042 L 57 9292 L 58 12137 L 59 7975 L 60 10516 L 61 6945 L 62 8760 L 63 11373 L 64 7282 L 65 9587 L 66 5943 L 67 7862 L 68 8529 L 69 6461 L 70 8474 L 71 5139 L 72 6852 L 73 4337 L 74 5341 L 75 6935 L 76 4055 L 77 5350 L 78 3019 L 79 4024 L 80 4776 L 81 3023 L 82 4058 L 83 2251 L 84 3039 L 85 1851 L 86 2247 L 87 3039 L 88 1720 L 89 2289 L 90 1249 L 91 1742 L 92 2273 L 93 1290 L 94 1830 L 95 987 L 96 1372 L 97 972 L 98 978 L 99 1372 L 100 767 L 101 1038 L 102 538 L 103 722 L 104 994 L 105 529 L 106 710 L 107 367 L 108 535 L 109 509 L 110 393 L 111 589 L 112 316 L 113 401 L 114 226 L 115 297 L 116 389 L 117 197 L 118 290 L 119 143 L 120 202 L 121 226 L 122 147 L 123 211 L 124 103 L 125 140 L 126 79 L 127 101 L 128 142 L 129 67 L 130 106 L 131 51 L 132 67 L 133 75 L 134 46 L 135 65 L 136 32 L 137 45 L 138 36 L 139 42 L 140 55 L 141 24 L 142 34 L 143 11 L 144 12 L 145 25 L 146 9 L 147 21 L 148 8 L 149 17 L 150 10 L 151 9 L 152 11 L 153 5 L 154 14 L 155 5 L 156 7 L 157 6 L 158 3 L 159 7 L 160 4 L 161 5 L 162 7 L 163 6 L 164 6 L 165 3 L 166 2 L 167 0 L 168 1 L 169 2 L 170 0 L 171 2 L 172 2 L 173 3 L 174 2 L 175 2 L 176 0 L 177 0 L 178 0 L 179 0 L 180 1 L 181 1 L 182 0 L 183 0 L 184 0 L 185 1 L 186 2 L 187 1 L 188 2 L 189 0 L 190 0 L 191 0 L 192 0 L 193 1 L 194 1 L 195 2"/>
  <path stroke="blanchedalmond" transform="matrix(4.504505,0.000000,0.000000,-0.001502,0.000000,1000.000000)" d="M 0 0 L 0 11 L 1 41 L 2 118 L 3 251 L 4 532 L 5 924 L 6 1500 L 7 2580 L 8 3164 L 9 5018 L 10 6108 L 11 8193 L 12 12030 L 13 11599 L 14 16410 L 15 16947 L 16 20329 L 17 25638 L 18 23361 L 19 31525 L 20 26494 L 21 33543 L 22 39633 L 23 33833 L 24 44866 L 25 33020 L 26 43543 L 27 45974 L 28 41030 L 29 50612 L 30 37388 L 31 49151 L 32 40472 L 33 44081 L 34 54221 L 35 38847 L 36 51156 L 37 33921 L 38 44680 L 39 48127 L 40 38710 L 41 48902 L 42 33436 L 43 44407 L 44 43373 L 45 39062 L 46 50116 L 47 34268 L 48 45652 L 49 30338 L 50 40610 L 51 47920 L 52 36278 L 53 48435 L 54 32356 L 55 42939 L 56 41366 L 57 37675 L 58 49334 L 59 33062 L 60 43626 L 61 29838 L 62 37507 L 63 48140 L 64 31771 L 65 42095 L 66 26739 L 67 35539 L 68 37571 L 69 29438 L 70 38388 L 71 24218 L 72 32092 L 73 21490 L 74 26087 L 75 33871 L 76 20799 L 77 27405 L 78 16238 L 79 21484 L 80 25225 L 81 16608 L 82 22120 L 83 12875 L 84 17174 L 85 10980 L 86 13179 L 87 17537 L 88 10097 L 89 13580 L 90 7732 L 91 10423 L 92 13393 L 93 7912 L 94 10700 L 95 6146 L 96 8242 L 97 6077 L 98 6224 L 99 8464 L 100 4728 L 101 6495 L 102 3578 L 103 4873 L 104 6457 L 105 3565 L 106 4909 L 107 2640 L 108 3644 L 109 3535 L 110 2742 L 111 3829 L 112 2090 L 113 2847 L 114 1587 L 115 2128 L 116 2914 L 117 1549 L 118 2116 L 119 1147 L 120 1600 L 121 1751 L 122 1134 L 123 1596 L 124 838 L 125 1190 L 126 645 L 127 836 L 128 1169 L 129 600 L 130 853 L 131 452 L 132 668 L 133 780 L 134 409 L 135 581 L 136 292 L 137 423 L 138 278 L 139 324 L 140 474 L 141 242 L 142 334 L 143 158 L 144 234 L 145 327 L 146 166 L 147 234 L 148 114 L 149 165 L 150 110 L 151 107 L 152 171 L 153 84 L 154 138 L 155 66 L 156 86 L 157 114 L 158 56 L 159 78 L 160 41 L 161 57 L 162 70 L 163 49 L 164 63 L 165 26 L 166 49 L 167 25 L 168 36 L 169 51 L 170 14 L 171 22 L 172 12 L 173 18 L 174 23 L 175 20 L 176 20 L 177 6 L 178 11 L 179 4 L 180 10 L 181 15 L 182 9 L 183 10 L 184 5 L 185 8 L 186 11 L 187 6 L 188 10 L 189 6 L 190 9 L 191 5 L 192 8 L 193 14 L 194 7 L 195 14 L 196 7 L 197 7 L 198 5 L 199 1 L 200 5 L 201 1 L 202 2 L 203 4 L 204 1 L 205 3 L 206 3 L 207 3 L 208 1 L 209 3 L 210 3 L 211 0 L 212 1 L 213 0 L 214 0 L 215 1 L 216 1 L 217 1 L 218 0 L 219 0 L 220 0 L 221 1"/>
 </g>
</svg>

及截图:

如您所见,我只是将 /n 替换为空,并添加 n 作为每个图表序列中的第一个数字。我还在 SVG 中添加了命名颜色的完整列表,你可以玩这个顺序,所以较深的颜色排在第一位,现在他们按字母顺序排列,这并不理想,因为你可以看到许多图表非常接近变成白色,几乎看不见它们。

现在,如果您不想编写代码,也可以手动执行此操作。只需将 /n 替换为空,然后添加 L,即可在记事本中转换数据(例如通过替换 ,)并添加递增的 x 坐标(遗憾的是,除非您在文本编辑器中有一些宏,否则您需要手动执行此操作)。粗略地添加 header 和 SVG 东西。

从这里您只需在浏览器中打开 SVG 并截取屏幕截图。然后在绘画中你可以添加任何你想要的。如果你学习 SVG 你甚至可以直接做 SVG 中的所有东西(太懒了)比如添加网格,标签,比例图例等...

viewbox 为您提供 scaling/resolution 带有一些边框的图表。 transforms 是这样计算的:

transform="matrix(1000.0/max(x),0.0,0.0,-1000.0*scale/divider,0.0,1000.0)"

其中 x 是所有图形的最大值 xdivider 是实际处理图形的所有 lthe 值中 /nn 和比例是 y 比例(因为分布概率往往远小于 1.0 值)。假设图表从 (0,0) 开始,1000.0viewbox 的无边框分辨率。这将确保您的数据不需要转换并且图表符合标准数学符号。

所以这里是空的SVG:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="-100 -100 1100 1100">
 <g fill="none" stroke-width="1px">
  <rect stroke="black" x="0" y="0" height="1000" width="1000"/>
  <path stroke="***HERE GOES COLOR NAME***" transform="matrix(***HERE COMPUTED TRANSFORM MATRIX***)" d="M 0 0 **HERE GRAPH: L x0 y0 L x1 y1 ... ** "/>
 </g>
</svg>

所以对于每个图形添加行 <path ...> 计算变换矩阵值并在 d="M 0 0 之后以 L 0 P(0) L 1 P(1) ....

的形式添加图形数据

你可以 add/tweak 任何你想要的,它只是文本文件...但是我不是 SVG 的专家(我只是为 decoder/encoder 编码我的向量 CAD/CAM SW 几年前我需要工作并使用它,因为但我的知识到此为止)所以可能有更简单的方法来做到这一点 SVG(就像摆脱增量 x 坐标)。如果您可以相对方式获取数据,那么您可以使用 l 1 dP[x] 而不是 L x P[x],这可以通过在记事本中简单替换来实现...