主持人步行者燃烧但随后保持不变
emcee walkers burn in but then remain the same
我在使用主持人时遇到问题。这是一个足够简单的 3 参数拟合,但偶尔(尽管使用很多,但到目前为止只在两种情况下发生过)我的助行器燃烧得很好,但随后不动(见下图)。报告的接受分数为 0。
有没有其他人遇到过这个问题?我已经尝试改变我的初始条件以及步行者和迭代的数量等。这段代码在非常相似的数据集上表现良好 运行。它不是一个具有挑战性的参数 space,步行者似乎不太可能获得 "stuck"。
有什么想法吗?我很难过...我的步行者似乎很懒惰...
下面的示例代码(和 sample data file)。此代码 + 数据文件在我 运行 时失败。
`
import numpy as n
import math
import pylab as py
import matplotlib.pyplot as plt
import scipy
from scipy.optimize import curve_fit
from scipy import ndimage
import pyfits
from scipy import stats
import emcee
import corner
import scipy.optimize as op
import matplotlib.pyplot as pl
from matplotlib.ticker import MaxNLocator
def sersic(x, B,r_s,m):
return B * n.exp(-1.0 * (1.9992*m - 0.3271) * ( (x/r_s)**(1.0/m) - 1.))
def lnprior(theta):
B,r_s,m, lnf = theta
if 0.0 < B < 500.0 and 0.5 < m < 10. and r_s > 0. and -10.0 < lnf < 1.0:
return 0.0
return -n.inf
def lnlike(theta, x, y, yerr): #"least squares"
B,r_s,m, lnf = theta
model = sersic(x,B, r_s, m)
inv_sigma2 = 1.0/(yerr**2 + model**2*n.exp(2*lnf))
return -0.5*(n.sum((y-model)**2*inv_sigma2 - n.log(inv_sigma2)))
def lnprob(theta, x, y, yerr):#kills based on priors
lp = lnprior(theta)
if not n.isfinite(lp):
return -n.inf
return lp + lnlike(theta, x, y, yerr)
profile=open("testprofile.dat",'r') #read in the data file
profilelines=profile.readlines()
x=n.empty(len(profilelines))
y=n.empty(len(profilelines))
yerr=n.empty(len(profilelines))
for i,line in enumerate(profilelines):
col=line.split()
x[i]=col[0]
y[i]=col[1]
yerr[i]=col[2]
# Find the maximum likelihood value.
chi2 = lambda *args: -2 * lnlike(*args)
result = op.minimize(chi2, [50,2.0,0.5,0.5], args=(x, y, yerr))
B_ml, rs_ml,m_ml, lnf_ml = result["x"]
print("""Maximum likelihood result:
B = {0}
r_s = {1}
m = {2}
""".format(B_ml, rs_ml,m_ml))
# Set up the sampler.
ndim, nwalkers = 4, 4000
pos = [result["x"] + 1e-4*n.random.randn(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr))
# Clear and run the production chain.
print("Running MCMC...")
Niter = 2000 #2000
sampler.run_mcmc(pos, Niter, rstate0=n.random.get_state())
print("Done.")
# Print out the mean acceptance fraction.
af = sampler.acceptance_fraction
print "Mean acceptance fraction:", n.mean(af)
# Plot sampler chain
pl.clf()
fig, axes = pl.subplots(3, 1, sharex=True, figsize=(8, 9))
axes[0].plot(sampler.chain[:, :, 0].T, color="k", alpha=0.4)
axes[0].yaxis.set_major_locator(MaxNLocator(5))
axes[0].set_ylabel("$B$")
axes[1].plot(sampler.chain[:, :, 1].T, color="k", alpha=0.4)
axes[1].yaxis.set_major_locator(MaxNLocator(5))
axes[1].set_ylabel("$r_s$")
axes[2].plot(n.exp(sampler.chain[:, :, 2]).T, color="k", alpha=0.4)
axes[2].yaxis.set_major_locator(MaxNLocator(5))
axes[2].set_xlabel("step number")
fig.tight_layout(h_pad=0.0)
fig.savefig("line-time_test.png")
# plot MCMC fit
burnin = 100
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim-1))
B_mcmc, r_s_mcmc, m_mcmc = map(lambda v: (v[0]),
zip(*n.percentile(samples, [50],
axis=0)))
print("""MCMC result:
B = {0}
r_s = {1}
m = {2}
""".format(B_mcmc, r_s_mcmc, m_mcmc))
pl.close()
# Make the triangle plot.
burnin = 50
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim-1))
fig = corner.corner(samples, labels=["$B$", "$r_s$", "$m$"])
fig.savefig("line-triangle_test.png")
这是一个更好的结果。我使随机初始样本不太接近最大似然值,并且 运行 链以更少的 walkers/chains 进行了更多的步骤。请注意,我正在绘制 m
参数而不是它的指数,就像您所做的那样。
平均接受分数约为 0.48,在我的笔记本电脑上 运行 花了大约 1 分钟。您当然可以添加更多步骤并获得更好的结果。
import numpy as n
import emcee
import corner
import scipy.optimize as op
import matplotlib.pyplot as pl
from matplotlib.ticker import MaxNLocator
def sersic(x, B, r_s, m):
return B * n.exp(
-1.0 * (1.9992 * m - 0.3271) * ((x / r_s)**(1.0 / m) - 1.))
def lnprior(theta):
B, r_s, m, lnf = theta
if 0.0 < B < 500.0 and 0.5 < m < 10. and r_s > 0. and -10.0 < lnf < 1.0:
return 0.0
return -n.inf
def lnlike(theta, x, y, yerr): # "least squares"
B, r_s, m, lnf = theta
model = sersic(x, B, r_s, m)
inv_sigma2 = 1.0 / (yerr**2 + model**2 * n.exp(2 * lnf))
return -0.5 * (n.sum((y - model)**2 * inv_sigma2 - n.log(inv_sigma2)))
def lnprob(theta, x, y, yerr): # kills based on priors
lp = lnprior(theta)
if not n.isfinite(lp):
return -n.inf
return lp + lnlike(theta, x, y, yerr)
profile = open("testprofile.dat", 'r') # read in the data file
profilelines = profile.readlines()
x = n.empty(len(profilelines))
y = n.empty(len(profilelines))
yerr = n.empty(len(profilelines))
for i, line in enumerate(profilelines):
col = line.split()
x[i] = col[0]
y[i] = col[1]
yerr[i] = col[2]
# Find the maximum likelihood value.
chi2 = lambda *args: -2 * lnlike(*args)
result = op.minimize(chi2, [50, 2.0, 0.5, 0.5], args=(x, y, yerr))
B_ml, rs_ml, m_ml, lnf_ml = result["x"]
print("""Maximum likelihood result:
B = {0}
r_s = {1}
m = {2}
lnf = {3}
""".format(B_ml, rs_ml, m_ml, lnf_ml))
# Set up the sampler.
ndim, nwalkers = 4, 10
pos = [result["x"] + 1e-1 * n.random.randn(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr))
# Clear and run the production chain.
print("Running MCMC...")
Niter = 50000
sampler.run_mcmc(pos, Niter, rstate0=n.random.get_state())
print("Done.")
# Print out the mean acceptance fraction.
af = sampler.acceptance_fraction
print("Mean acceptance fraction:", n.mean(af))
# Plot sampler chain
pl.clf()
fig, axes = pl.subplots(3, 1, sharex=True, figsize=(8, 9))
axes[0].plot(sampler.chain[:, :, 0].T, color="k", alpha=0.4)
axes[0].yaxis.set_major_locator(MaxNLocator(5))
axes[0].set_ylabel("$B$")
axes[1].plot(sampler.chain[:, :, 1].T, color="k", alpha=0.4)
axes[1].yaxis.set_major_locator(MaxNLocator(5))
axes[1].set_ylabel("$r_s$")
# axes[2].plot(n.exp(sampler.chain[:, :, 2]).T, color="k", alpha=0.4)
axes[2].plot(sampler.chain[:, :, 2].T, color="k", alpha=0.4)
axes[2].yaxis.set_major_locator(MaxNLocator(5))
axes[2].set_ylabel("$m$")
axes[2].set_xlabel("step number")
fig.tight_layout(h_pad=0.0)
fig.savefig("line-time_test.png")
# plot MCMC fit
burnin = 10000
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim - 1))
B_mcmc, r_s_mcmc, m_mcmc = map(
lambda v: (v[0]), zip(*n.percentile(samples, [50], axis=0)))
print("""MCMC result:
B = {0}
r_s = {1}
m = {2}
""".format(B_mcmc, r_s_mcmc, m_mcmc))
pl.close()
# Make the triangle plot.
burnin = 50
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim - 1))
fig = corner.corner(samples, labels=["$B$", "$r_s$", "$m$"])
fig.savefig("line-triangle_test.png")
我在使用主持人时遇到问题。这是一个足够简单的 3 参数拟合,但偶尔(尽管使用很多,但到目前为止只在两种情况下发生过)我的助行器燃烧得很好,但随后不动(见下图)。报告的接受分数为 0。
有没有其他人遇到过这个问题?我已经尝试改变我的初始条件以及步行者和迭代的数量等。这段代码在非常相似的数据集上表现良好 运行。它不是一个具有挑战性的参数 space,步行者似乎不太可能获得 "stuck"。
有什么想法吗?我很难过...我的步行者似乎很懒惰...
下面的示例代码(和 sample data file)。此代码 + 数据文件在我 运行 时失败。
`
import numpy as n
import math
import pylab as py
import matplotlib.pyplot as plt
import scipy
from scipy.optimize import curve_fit
from scipy import ndimage
import pyfits
from scipy import stats
import emcee
import corner
import scipy.optimize as op
import matplotlib.pyplot as pl
from matplotlib.ticker import MaxNLocator
def sersic(x, B,r_s,m):
return B * n.exp(-1.0 * (1.9992*m - 0.3271) * ( (x/r_s)**(1.0/m) - 1.))
def lnprior(theta):
B,r_s,m, lnf = theta
if 0.0 < B < 500.0 and 0.5 < m < 10. and r_s > 0. and -10.0 < lnf < 1.0:
return 0.0
return -n.inf
def lnlike(theta, x, y, yerr): #"least squares"
B,r_s,m, lnf = theta
model = sersic(x,B, r_s, m)
inv_sigma2 = 1.0/(yerr**2 + model**2*n.exp(2*lnf))
return -0.5*(n.sum((y-model)**2*inv_sigma2 - n.log(inv_sigma2)))
def lnprob(theta, x, y, yerr):#kills based on priors
lp = lnprior(theta)
if not n.isfinite(lp):
return -n.inf
return lp + lnlike(theta, x, y, yerr)
profile=open("testprofile.dat",'r') #read in the data file
profilelines=profile.readlines()
x=n.empty(len(profilelines))
y=n.empty(len(profilelines))
yerr=n.empty(len(profilelines))
for i,line in enumerate(profilelines):
col=line.split()
x[i]=col[0]
y[i]=col[1]
yerr[i]=col[2]
# Find the maximum likelihood value.
chi2 = lambda *args: -2 * lnlike(*args)
result = op.minimize(chi2, [50,2.0,0.5,0.5], args=(x, y, yerr))
B_ml, rs_ml,m_ml, lnf_ml = result["x"]
print("""Maximum likelihood result:
B = {0}
r_s = {1}
m = {2}
""".format(B_ml, rs_ml,m_ml))
# Set up the sampler.
ndim, nwalkers = 4, 4000
pos = [result["x"] + 1e-4*n.random.randn(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr))
# Clear and run the production chain.
print("Running MCMC...")
Niter = 2000 #2000
sampler.run_mcmc(pos, Niter, rstate0=n.random.get_state())
print("Done.")
# Print out the mean acceptance fraction.
af = sampler.acceptance_fraction
print "Mean acceptance fraction:", n.mean(af)
# Plot sampler chain
pl.clf()
fig, axes = pl.subplots(3, 1, sharex=True, figsize=(8, 9))
axes[0].plot(sampler.chain[:, :, 0].T, color="k", alpha=0.4)
axes[0].yaxis.set_major_locator(MaxNLocator(5))
axes[0].set_ylabel("$B$")
axes[1].plot(sampler.chain[:, :, 1].T, color="k", alpha=0.4)
axes[1].yaxis.set_major_locator(MaxNLocator(5))
axes[1].set_ylabel("$r_s$")
axes[2].plot(n.exp(sampler.chain[:, :, 2]).T, color="k", alpha=0.4)
axes[2].yaxis.set_major_locator(MaxNLocator(5))
axes[2].set_xlabel("step number")
fig.tight_layout(h_pad=0.0)
fig.savefig("line-time_test.png")
# plot MCMC fit
burnin = 100
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim-1))
B_mcmc, r_s_mcmc, m_mcmc = map(lambda v: (v[0]),
zip(*n.percentile(samples, [50],
axis=0)))
print("""MCMC result:
B = {0}
r_s = {1}
m = {2}
""".format(B_mcmc, r_s_mcmc, m_mcmc))
pl.close()
# Make the triangle plot.
burnin = 50
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim-1))
fig = corner.corner(samples, labels=["$B$", "$r_s$", "$m$"])
fig.savefig("line-triangle_test.png")
这是一个更好的结果。我使随机初始样本不太接近最大似然值,并且 运行 链以更少的 walkers/chains 进行了更多的步骤。请注意,我正在绘制 m
参数而不是它的指数,就像您所做的那样。
平均接受分数约为 0.48,在我的笔记本电脑上 运行 花了大约 1 分钟。您当然可以添加更多步骤并获得更好的结果。
import numpy as n
import emcee
import corner
import scipy.optimize as op
import matplotlib.pyplot as pl
from matplotlib.ticker import MaxNLocator
def sersic(x, B, r_s, m):
return B * n.exp(
-1.0 * (1.9992 * m - 0.3271) * ((x / r_s)**(1.0 / m) - 1.))
def lnprior(theta):
B, r_s, m, lnf = theta
if 0.0 < B < 500.0 and 0.5 < m < 10. and r_s > 0. and -10.0 < lnf < 1.0:
return 0.0
return -n.inf
def lnlike(theta, x, y, yerr): # "least squares"
B, r_s, m, lnf = theta
model = sersic(x, B, r_s, m)
inv_sigma2 = 1.0 / (yerr**2 + model**2 * n.exp(2 * lnf))
return -0.5 * (n.sum((y - model)**2 * inv_sigma2 - n.log(inv_sigma2)))
def lnprob(theta, x, y, yerr): # kills based on priors
lp = lnprior(theta)
if not n.isfinite(lp):
return -n.inf
return lp + lnlike(theta, x, y, yerr)
profile = open("testprofile.dat", 'r') # read in the data file
profilelines = profile.readlines()
x = n.empty(len(profilelines))
y = n.empty(len(profilelines))
yerr = n.empty(len(profilelines))
for i, line in enumerate(profilelines):
col = line.split()
x[i] = col[0]
y[i] = col[1]
yerr[i] = col[2]
# Find the maximum likelihood value.
chi2 = lambda *args: -2 * lnlike(*args)
result = op.minimize(chi2, [50, 2.0, 0.5, 0.5], args=(x, y, yerr))
B_ml, rs_ml, m_ml, lnf_ml = result["x"]
print("""Maximum likelihood result:
B = {0}
r_s = {1}
m = {2}
lnf = {3}
""".format(B_ml, rs_ml, m_ml, lnf_ml))
# Set up the sampler.
ndim, nwalkers = 4, 10
pos = [result["x"] + 1e-1 * n.random.randn(ndim) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr))
# Clear and run the production chain.
print("Running MCMC...")
Niter = 50000
sampler.run_mcmc(pos, Niter, rstate0=n.random.get_state())
print("Done.")
# Print out the mean acceptance fraction.
af = sampler.acceptance_fraction
print("Mean acceptance fraction:", n.mean(af))
# Plot sampler chain
pl.clf()
fig, axes = pl.subplots(3, 1, sharex=True, figsize=(8, 9))
axes[0].plot(sampler.chain[:, :, 0].T, color="k", alpha=0.4)
axes[0].yaxis.set_major_locator(MaxNLocator(5))
axes[0].set_ylabel("$B$")
axes[1].plot(sampler.chain[:, :, 1].T, color="k", alpha=0.4)
axes[1].yaxis.set_major_locator(MaxNLocator(5))
axes[1].set_ylabel("$r_s$")
# axes[2].plot(n.exp(sampler.chain[:, :, 2]).T, color="k", alpha=0.4)
axes[2].plot(sampler.chain[:, :, 2].T, color="k", alpha=0.4)
axes[2].yaxis.set_major_locator(MaxNLocator(5))
axes[2].set_ylabel("$m$")
axes[2].set_xlabel("step number")
fig.tight_layout(h_pad=0.0)
fig.savefig("line-time_test.png")
# plot MCMC fit
burnin = 10000
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim - 1))
B_mcmc, r_s_mcmc, m_mcmc = map(
lambda v: (v[0]), zip(*n.percentile(samples, [50], axis=0)))
print("""MCMC result:
B = {0}
r_s = {1}
m = {2}
""".format(B_mcmc, r_s_mcmc, m_mcmc))
pl.close()
# Make the triangle plot.
burnin = 50
samples = sampler.chain[:, burnin:, :3].reshape((-1, ndim - 1))
fig = corner.corner(samples, labels=["$B$", "$r_s$", "$m$"])
fig.savefig("line-triangle_test.png")