查询区域内基因

Query genes within regions

我想检索存在于一系列区域内的基因。比如说,我有一个带有查询位置的床文件,例如:

1     2665697     4665777      MIR201
1    10391435    12391516      MIR500
1    15106831    17106911      MIR122
1    23436535    25436616      MIR234 
1    23436575    25436656      MIR488

我想获得属于这些区域的基因。

我尝试使用 biomaRtbedtools 相交,但我得到的输出是对应于所有区域,而不是一个一个地查询,因为我想获得的所需输出是每一行中的基因,但在不同的行中,如果我一次查询一个区域。基本上我想知道哪些基因属于每个区域,但仍然能够识别哪些基因属于哪些区域。

我所做的是,从检测到的miRNA区域,向上和向下扩展基因组区域,这样我就可以从这个miRNA中得到邻近的基因。我上下使用了 100 万个碱基 windows。这只适用于一个查询,但是,如何使用 biomaRt 进行多次查询或使用 bedtools 进行多次查询,这样我就有点像:

1     2665697     4665777      MIR201      GENEX, GENEY, GENEZ...
1    10391435    12391516      MIR500      GENEA, GENEB, GENEC...
1    15106831    17106911      MIR122
1    23436535    25436616      MIR234 
1    23436575    25436656      MIR488

意味着 GENEX、GENEY 和 GENEZ 落在 1:2665697-4665777 范围内,MIR201 位于中间,因为这个区域是计算减去 100 万 bp 到 sart,并添加 100 万 bp 到结束位置.

我在某种程度上确定了每个 miRNA 的邻近基因,以便在物种内进行比较,但我不知道如何使用 biomaRt 单独查询多个区域床具.

有什么帮助吗?

您可以尝试 biomart & tidyverse 解决方案

library(biomaRt)
library(tidyverse)
# specify the database
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")

# queries per row
res <- d %>% 
  split(1:nrow(.)) %>% 
  map(~getBM(attributes=c("external_gene_name", "chromosome_name", "start_position", "end_position"), 
             filters = c("chromosome_name" , "start", "end"), 
             values = list(.$V1, .$V2, .$V3), 
             mart = ensembl))


# plot the results for the first element to check the overlapping genes
plot(data.frame(unlist(d[1, 2:3]), nrow(res$`1`)), type="l", col=2, lwd =3,
     ylim = c(0, nrow(res$`1`)),
     xlim=unlist(d[1, 2:3])+c(-100000,100000))
res$`1` %>% 
  gather(k,v,-external_gene_name,-chromosome_name) %>% 
  arrange(external_gene_name) %>% 
  mutate(n=rep(1:(n()/2),each=2)) %>% 
  split(.$n) %>% 
  map(~with(.,lines(cbind(v, n), type="l", lwd =3)))

# transform the data in your expected data.frame
res %>% 
  map(~transmute(.,new=paste(external_gene_name, collapse="," )) %>% 
        slice(1)) %>% 
  bind_rows() %>% 
  bind_cols(d,.) %>% 
  as.tibble()
# A tibble: 5 x 5
     V1       V2       V3    V4    new                                                                                                               
  <int>    <int>    <int> <fct>  <chr>                                                                                                             
1     1  2665697  4665777 MIR201 TTC34,AC242022.1,AL592464.2,AL592464.1,AL589702.1,ACTRT2,LINC00982,PRDM16,MIR4251,AL008733.1,AL512383.1,AL590438.~
2     1 10391435 12391516 MIR500 AL139424.2,PGD,AL139424.1,CENPS-CORT,CENPS,CORT,DFFA,AL354956.1,PEX14,RN7SL614P,CASZ1,AL139423.1,HSPE1P24,C1orf12~
3     1 15106831 17106911 MIR122 KAZN,TMEM51-AS1,TMEM51,C1orf195,AL035405.1,AL391094.1,FHAD1,AL031283.2,AL031283.3,AL031283.1,EFHD2,CTRC,CELA2A,CE~
4     1 23436535 25436616 MIR234 ASAP3,E2F2,AL021154.1,ID3,MDS2,AL451000.1,RPL11,ELOA,ELOA-AS1,PITHD1,LYPLA2,GALE,HMGCL,FUCA1,CNR2,BTBD6P1,AL59060~
5     1 23436575 25436656 MIR488 ASAP3,E2F2,AL021154.1,ID3,MDS2,AL451000.1,RPL11,ELOA,ELOA-AS1,PITHD1,LYPLA2,GALE,HMGCL,FUCA1,CNR2,BTBD6P1,AL59060~

如果您需要所有数据,您也可以尝试 purrr 解决方案。优点:biomart 输出存储在一个列表中,不会丢失。

d %>% 
  nest(-V4) %>% 
  mutate(biomart=map(data, ~getBM(attributes=c("external_gene_name", "chromosome_name", "start_position", "end_position"), 
             filters = c("chromosome_name" , "start", "end"), 
             values = list(.$V1, .$V2, .$V3), 
             mart = ensembl)),  
           Genes = map(biomart, ~paste(.$external_gene_name, collapse = ","))) %>% 
  unnest(Genes, data)
# A tibble: 5 x 6
  V4     biomart                Genes                                                         V1     V2     V3
  <fct>  <list>                 <chr>                                                      <int>  <int>  <int>
1 MIR201 <data.frame [43 x 4]>  TTC34,AC242022.1,AL592464.2,AL592464.1,AL589702.1,ACTRT2,~     1 2.67e6 4.67e6
2 MIR500 <data.frame [72 x 4]>  AL139424.2,PGD,AL139424.1,CENPS-CORT,CENPS,CORT,DFFA,AL35~     1 1.04e7 1.24e7
3 MIR122 <data.frame [101 x 4]> KAZN,TMEM51-AS1,TMEM51,C1orf195,AL035405.1,AL391094.1,FHA~     1 1.51e7 1.71e7
4 MIR234 <data.frame [62 x 4]>  ASAP3,E2F2,AL021154.1,ID3,MDS2,AL451000.1,RPL11,ELOA,ELOA~     1 2.34e7 2.54e7
5 MIR488 <data.frame [62 x 4]>  ASAP3,E2F2,AL021154.1,ID3,MDS2,AL451000.1,RPL11,ELOA,ELOA~     1 2.34e7 2.54e7

相同的方法,没有 tidyverse:

library(biomaRt)

# data
d <- read.table(text = "1     2665697     4665777      MIR201
1    10391435    12391516      MIR500
1    15106831    17106911      MIR122
1    23436535    25436616      MIR234 
1    23436575    25436656      MIR488")

# specify the database
ensembl = useMart("ensembl", dataset = "hsapiens_gene_ensembl")

# loop through rows, get genes, then paste with collapse,
# and finally bind back with data d.
res <- cbind(
  d,
  genes = apply(d, 1, function(i){
    x <- getBM(attributes=c("external_gene_name"), 
               filters = c("chromosome_name" , "start", "end"), 
               values = list(i[1], i[2], i[3]), 
               mart = ensembl)
    # keeping only 3 genes, as output is too long.
    # In your case remove below line
    x <- head(x, 3)

    # return genes, comma separated
    paste(x$external_gene_name, collapse = ",")
  })
)

res
#   V1       V2       V3     V4                       genes
# 1  1  2665697  4665777 MIR201 TTC34,AC242022.1,AL592464.2
# 2  1 10391435 12391516 MIR500   AL139424.2,PGD,AL139424.1
# 3  1 15106831 17106911 MIR122      KAZN,TMEM51-AS1,TMEM51
# 4  1 23436535 25436616 MIR234       ASAP3,E2F2,AL021154.1
# 5  1 23436575 25436656 MIR488       ASAP3,E2F2,AL021154.1