使用“lapply”对数据框 (R) 中的所有列进行缩尾处理
Winsorizing across all columns in a data frame (R) using `lapply`
我正在尝试使用 library(DescTools)
包中的 lapply
来应用 Winsorize()
函数。我目前拥有的是;
data$col1 <- Winsorize(data$col1)
这基本上用基于分位数的值替换了极值,将以下数据替换为如下;
> data$col1
[1] -0.06775798 **-0.55213508** -0.12338265
[4] 0.04928349 **0.47524313** 0.04782829
[7] -0.05070639 **-112.67126382** 0.12657896
[10] -0.12886632
> Winsorize(data$col1)
[1] -0.06775798 **-0.37884540** -0.12338265 0.04928349
[5] **0.26038103** 0.04782829 -0.05070639 **-0.37884540**
[9] 0.12657896 -0.12886632
我有一个 for loop
,它可以跨 data.frame col1
、col2
、col3
、col4
的所有列执行此操作,但是,我知道 lapply
是一个更好的选择,所以我试图将它合并到 lapply
函数中,但似乎无法让它工作。如果有人能指出我正确的方向,我将不胜感激。
数据;
data <- structure(list(EQ.TA = c(-0.0677579847115102, -0.552135083517749,
-0.123382654164705, 0.0492834931482554, 0.475243125304193, 0.0478282913638668,
-0.050706389027946, -112.671263815473, 0.126578956975704, -0.128866322940619
), NI.EQ = c(3.64670235329765, 1.66115713369585, 0.209424623633739,
0.340430636358184, -0.248411254566261, -12.1709277350516, 1.06888235737433,
0.0515582237132515, 0.177323118521857, 0.419879195374698), NI.TA = c(-0.24709320230217,
-0.917183132749265, -0.0258393659113752, 0.0167776109344148,
-0.118055740980805, -0.582114677880617, -0.0541991646381309,
-5.80913022585296, 0.0224453753901758, -0.0541082879872031),
TL.TA = c(1.06775798471151, 1.55213508351775, 1.12338265416471,
0.950716506851745, 0.524756874695807, 0.952171708636133,
1.05070638902795, 113.671263815473, 0.873421043024296, 1.12886632294062
)), .Names = c("EQ.TA", "NI.EQ", "NI.TA", "TL.TA"), row.names = c(NA,
10L), class = "data.frame")
您可以 lapply
整个 data.frame
并像这样重新分配它:
library(DescTools)
data[]<-lapply(data, Winsorize)
data
# EQ.TA NI.EQ NI.TA TL.TA
#1 -0.06775798 2.75320700 -0.24709320 1.0677580
#2 -0.55213508 1.66115713 -0.91718313 1.5521351
#3 -0.12338265 0.20942462 -0.02583937 1.1233827
#4 0.04928349 0.34043064 0.01677761 0.9507165
#5 0.31834425 -0.24841125 -0.11805574 0.6816558
#6 0.04782829 -6.80579532 -0.58211468 0.9521717
#7 -0.05070639 1.06888236 -0.05419916 1.0507064
#8 -62.21765589 0.05155822 -3.60775403 63.2176559
#9 0.12657896 0.17732312 0.01989488 0.8734210
#10 -0.12886632 0.41987920 -0.05410829 1.1288663
我喜欢上面的答案。但是对于最近的一个研究项目,我有一个包含不同类型变量的数据框。我只想使用 lapply 保持 NA 值在 1% 级别对数值变量进行 winsorize。扩展上面的答案我认为以下可能是一个合适的扩展:
library(DescTools)
wins_vars <- function(x, pct_level = 0.01){
if(is.numeric(x)){
Winsorize(x, probs = c(pct_level, 1-pct_level), na.rm = T)
} else {x}
}
df <- bind_cols(
lapply(df, wins_vars))
我正在尝试使用 library(DescTools)
包中的 lapply
来应用 Winsorize()
函数。我目前拥有的是;
data$col1 <- Winsorize(data$col1)
这基本上用基于分位数的值替换了极值,将以下数据替换为如下;
> data$col1
[1] -0.06775798 **-0.55213508** -0.12338265
[4] 0.04928349 **0.47524313** 0.04782829
[7] -0.05070639 **-112.67126382** 0.12657896
[10] -0.12886632
> Winsorize(data$col1)
[1] -0.06775798 **-0.37884540** -0.12338265 0.04928349
[5] **0.26038103** 0.04782829 -0.05070639 **-0.37884540**
[9] 0.12657896 -0.12886632
我有一个 for loop
,它可以跨 data.frame col1
、col2
、col3
、col4
的所有列执行此操作,但是,我知道 lapply
是一个更好的选择,所以我试图将它合并到 lapply
函数中,但似乎无法让它工作。如果有人能指出我正确的方向,我将不胜感激。
数据;
data <- structure(list(EQ.TA = c(-0.0677579847115102, -0.552135083517749,
-0.123382654164705, 0.0492834931482554, 0.475243125304193, 0.0478282913638668,
-0.050706389027946, -112.671263815473, 0.126578956975704, -0.128866322940619
), NI.EQ = c(3.64670235329765, 1.66115713369585, 0.209424623633739,
0.340430636358184, -0.248411254566261, -12.1709277350516, 1.06888235737433,
0.0515582237132515, 0.177323118521857, 0.419879195374698), NI.TA = c(-0.24709320230217,
-0.917183132749265, -0.0258393659113752, 0.0167776109344148,
-0.118055740980805, -0.582114677880617, -0.0541991646381309,
-5.80913022585296, 0.0224453753901758, -0.0541082879872031),
TL.TA = c(1.06775798471151, 1.55213508351775, 1.12338265416471,
0.950716506851745, 0.524756874695807, 0.952171708636133,
1.05070638902795, 113.671263815473, 0.873421043024296, 1.12886632294062
)), .Names = c("EQ.TA", "NI.EQ", "NI.TA", "TL.TA"), row.names = c(NA,
10L), class = "data.frame")
您可以 lapply
整个 data.frame
并像这样重新分配它:
library(DescTools)
data[]<-lapply(data, Winsorize)
data
# EQ.TA NI.EQ NI.TA TL.TA
#1 -0.06775798 2.75320700 -0.24709320 1.0677580
#2 -0.55213508 1.66115713 -0.91718313 1.5521351
#3 -0.12338265 0.20942462 -0.02583937 1.1233827
#4 0.04928349 0.34043064 0.01677761 0.9507165
#5 0.31834425 -0.24841125 -0.11805574 0.6816558
#6 0.04782829 -6.80579532 -0.58211468 0.9521717
#7 -0.05070639 1.06888236 -0.05419916 1.0507064
#8 -62.21765589 0.05155822 -3.60775403 63.2176559
#9 0.12657896 0.17732312 0.01989488 0.8734210
#10 -0.12886632 0.41987920 -0.05410829 1.1288663
我喜欢上面的答案。但是对于最近的一个研究项目,我有一个包含不同类型变量的数据框。我只想使用 lapply 保持 NA 值在 1% 级别对数值变量进行 winsorize。扩展上面的答案我认为以下可能是一个合适的扩展:
library(DescTools)
wins_vars <- function(x, pct_level = 0.01){
if(is.numeric(x)){
Winsorize(x, probs = c(pct_level, 1-pct_level), na.rm = T)
} else {x}
}
df <- bind_cols(
lapply(df, wins_vars))