PyTorch 中是否存在干净且可扩展的 LSTM 实现?

Does a clean and extendable LSTM implementation exists in PyTorch?

我想自己创建一个LSTM class,但是,我不想再次从头开始重写classic LSTM 函数。

PyTorch 的代码中挖掘,我只发现一个肮脏的实现涉及至少 3-4 classes 继承:

  1. https://github.com/pytorch/pytorch/blob/98c24fae6b6400a7d1e13610b20aa05f86f77070/torch/nn/modules/rnn.py#L323
  2. https://github.com/pytorch/pytorch/blob/98c24fae6b6400a7d1e13610b20aa05f86f77070/torch/nn/modules/rnn.py#L12
  3. https://github.com/pytorch/pytorch/blob/98c24fae6b6400a7d1e13610b20aa05f86f77070/torch/nn/_functions/rnn.py#L297

某个地方是否存在 clean PyTorch 实现?任何链接都会有所帮助。

例如,我知道 TensorFlow 中存在 LSTM 的干净实现,但我需要派生 PyTorch 一个。

为了一个明确的例子,我正在寻找的是一个像 this 一样干净的实现,但是在 PyTorch 中:

我找到的最佳实现在这里
https://github.com/pytorch/benchmark/blob/master/rnns/benchmarks/lstm_variants/lstm.py

它甚至实现了四种不同的循环丢失变体,这非常有用!
如果你把丢失的部分拿走,你会得到

import math
import torch as th
import torch.nn as nn

class LSTM(nn.Module):

    def __init__(self, input_size, hidden_size, bias=True):
        super(LSTM, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.i2h = nn.Linear(input_size, 4 * hidden_size, bias=bias)
        self.h2h = nn.Linear(hidden_size, 4 * hidden_size, bias=bias)
        self.reset_parameters()

    def reset_parameters(self):
        std = 1.0 / math.sqrt(self.hidden_size)
        for w in self.parameters():
            w.data.uniform_(-std, std)

    def forward(self, x, hidden):
        h, c = hidden
        h = h.view(h.size(1), -1)
        c = c.view(c.size(1), -1)
        x = x.view(x.size(1), -1)

        # Linear mappings
        preact = self.i2h(x) + self.h2h(h)

        # activations
        gates = preact[:, :3 * self.hidden_size].sigmoid()
        g_t = preact[:, 3 * self.hidden_size:].tanh()
        i_t = gates[:, :self.hidden_size]
        f_t = gates[:, self.hidden_size:2 * self.hidden_size]
        o_t = gates[:, -self.hidden_size:]

        c_t = th.mul(c, f_t) + th.mul(i_t, g_t)

        h_t = th.mul(o_t, c_t.tanh())

        h_t = h_t.view(1, h_t.size(0), -1)
        c_t = c_t.view(1, c_t.size(0), -1)
        return h_t, (h_t, c_t)

PS:存储库包含 LSTM 和其他 RNN 的更多变体:
https://github.com/pytorch/benchmark/tree/master/rnns/benchmarks.
看看吧,说不定你心目中的扩展已经有了!

编辑:
如评论中所述,您可以包装上面的 LSTM 单元格以处理顺序输出:

import math
import torch as th
import torch.nn as nn


class LSTMCell(nn.Module):

    def __init__(self, input_size, hidden_size, bias=True):
        # As before

    def reset_parameters(self):
        # As before

    def forward(self, x, hidden):

        if hidden is None:
            hidden = self._init_hidden(x)

        # Rest as before

    @staticmethod
    def _init_hidden(input_):
        h = th.zeros_like(input_.view(1, input_.size(1), -1))
        c = th.zeros_like(input_.view(1, input_.size(1), -1))
        return h, c


class LSTM(nn.Module):

    def __init__(self, input_size, hidden_size, bias=True):
        super().__init__()
        self.lstm_cell = LSTMCell(input_size, hidden_size, bias)

    def forward(self, input_, hidden=None):
        # input_ is of dimensionalty (1, time, input_size, ...)

        outputs = []
        for x in torch.unbind(input_, dim=1):
            hidden = self.lstm_cell(x, hidden)
            outputs.append(hidden[0].clone())

        return torch.stack(outputs, dim=1)

我没有测试代码,因为我正在使用 convLSTM 实现。如果有什么问题请告诉我。

更新:修复了链接。

我制作了一个简单通用的框架来自定义 LSTM: https://github.com/daehwannam/pytorch-rnn-util

您可以通过设计 LSTM 单元并将它们提供给 LSTMFrame 来实现自定义 LSTM。 自定义 LSTM 的示例是 LayerNormLSTM 包中的:

# snippet from rnn_util/seq.py
class LayerNormLSTM(LSTMFrame):
    def __init__(self, input_size, hidden_size, num_layers=1, dropout=0, r_dropout=0, bidirectional=False, layer_norm_enabled=True):
        r_dropout_layer = nn.Dropout(r_dropout)
        rnn_cells = tuple(
            tuple(
                LayerNormLSTMCell(
                    input_size if layer_idx == 0 else hidden_size * (2 if bidirectional else 1),
                    hidden_size,
                    dropout=r_dropout_layer,
                    layer_norm_enabled=layer_norm_enabled)
                for _ in range(2 if bidirectional else 1))
            for layer_idx in range(num_layers))

        super().__init__(rnn_cells, dropout, bidirectional)

LayerNormLSTM 具有 PyTorch 的标准 LSTM 和附加选项的关键选项,r_dropoutlayer_norm_enabled:

# example.py
import torch
import rnn_util


bidirectional = True
num_directions = 2 if bidirectional else 1

rnn = rnn_util.LayerNormLSTM(10, 20, 2, dropout=0.3, r_dropout=0.25,
                             bidirectional=bidirectional, layer_norm_enabled=True)
# rnn = torch.nn.LSTM(10, 20, 2, bidirectional=bidirectional)

input = torch.randn(5, 3, 10)
h0 = torch.randn(2 * num_directions, 3, 20)
c0 = torch.randn(2 * num_directions, 3, 20)
output, (hn, cn) = rnn(input, (h0, c0))

print(output.size())