Official ZeroOut gradient example error: AttributeError: 'list' object has no attribute 'eval'
Official ZeroOut gradient example error: AttributeError: 'list' object has no attribute 'eval'
按照tensorflow官网的官方教程:https://www.tensorflow.org/extend/adding_an_op
还描述了如何调用教程中示例 ZeroOut 的渐变,我想在下面的这个简短代码片段中尝试。
我在这里找到了代码:https://github.com/MatteoRagni/tf.ZeroOut.gpu
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
zero_out_module = tf.load_op_library('./libzeroout.so')
@ops.RegisterGradient("ZeroOut")
def _zero_out_grad(op, grad):
to_zero = op.inputs[0]
shape = array_ops.shape(to_zero)
index = array_ops.zeros_like(shape)
first_grad = array_ops.reshape(grad, [-1])[0]
to_zero_grad = sparse_ops.sparse_to_dense([index], shape, first_grad, 0)
return [to_zero_grad] # List of one Tensor, since we have one input
t_in = tf.placeholder(tf.int32, [None,None])
ret = zero_out_module.zero_out(t_in)
grad = tf.gradients(ys=tf.reduce_sum(ret), xs=t_in)
with tf.Session(''):
feed_dict = {t_in: [[1, 2], [3, 4]]}
print "ret val: ", ret.eval(feed_dict=feed_dict)
print "grad: ", grad
print "grad: ", grad.eval(feed_dict=feed_dict)
我收到这个错误...
AttributeError: 'list' object has no attribute 'eval'
...但我可以做到 ret.eval()。
为什么我不能调用 grad.eval()?我想在渐变张量中看到这些值。如何调试梯度?
老问题的答案
实施
def _zero_out_grad(op, *grads):
topdiff = grads[0]
bottom = op.inputs[0]
shape = array_ops.shape(bottom)
index = array_ops.zeros_like(shape)
first_grad = array_ops.reshape(topdiff, [-1])[0]
to_zero_grad = sparse_ops.sparse_to_dense([index], shape, first_grad, 0)
return to_zero_grad
在这里工作得很好。您确定在 tf.Session()
之前执行“@ops.RegisterGradient("ZeroOut")”吗?
通常
zero_out_module = tf.load_op_library('./libzeroout.so')
@ops.RegisterGradient("ZeroOut")
def _zero_out_grad(op, grad):
# ...
放在不同的文件中,刚刚导入。即使使用最新的 TensorFlow 版本,一个完整的工作示例是 here.
完全改变问题的答案
你的渐变函数returns一个列表和一个Python列表没有'eval()'。试试:
grad = tf.gradients(ys=tf.reduce_sum(ret), xs=t_in)[0]
或遵循最佳实践并使用
grad = tf.gradients(ys=tf.reduce_sum(ret), xs=t_in)
with tf.Session() as sess:
sess.run(grad, feed_dict=feed_dict)
请不要更改您的整个问题
按照tensorflow官网的官方教程:https://www.tensorflow.org/extend/adding_an_op 还描述了如何调用教程中示例 ZeroOut 的渐变,我想在下面的这个简短代码片段中尝试。
我在这里找到了代码:https://github.com/MatteoRagni/tf.ZeroOut.gpu
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import sparse_ops
zero_out_module = tf.load_op_library('./libzeroout.so')
@ops.RegisterGradient("ZeroOut")
def _zero_out_grad(op, grad):
to_zero = op.inputs[0]
shape = array_ops.shape(to_zero)
index = array_ops.zeros_like(shape)
first_grad = array_ops.reshape(grad, [-1])[0]
to_zero_grad = sparse_ops.sparse_to_dense([index], shape, first_grad, 0)
return [to_zero_grad] # List of one Tensor, since we have one input
t_in = tf.placeholder(tf.int32, [None,None])
ret = zero_out_module.zero_out(t_in)
grad = tf.gradients(ys=tf.reduce_sum(ret), xs=t_in)
with tf.Session(''):
feed_dict = {t_in: [[1, 2], [3, 4]]}
print "ret val: ", ret.eval(feed_dict=feed_dict)
print "grad: ", grad
print "grad: ", grad.eval(feed_dict=feed_dict)
我收到这个错误...
AttributeError: 'list' object has no attribute 'eval'
...但我可以做到 ret.eval()。
为什么我不能调用 grad.eval()?我想在渐变张量中看到这些值。如何调试梯度?
老问题的答案
实施
def _zero_out_grad(op, *grads):
topdiff = grads[0]
bottom = op.inputs[0]
shape = array_ops.shape(bottom)
index = array_ops.zeros_like(shape)
first_grad = array_ops.reshape(topdiff, [-1])[0]
to_zero_grad = sparse_ops.sparse_to_dense([index], shape, first_grad, 0)
return to_zero_grad
在这里工作得很好。您确定在 tf.Session()
之前执行“@ops.RegisterGradient("ZeroOut")”吗?
通常
zero_out_module = tf.load_op_library('./libzeroout.so')
@ops.RegisterGradient("ZeroOut")
def _zero_out_grad(op, grad):
# ...
放在不同的文件中,刚刚导入。即使使用最新的 TensorFlow 版本,一个完整的工作示例是 here.
完全改变问题的答案
你的渐变函数returns一个列表和一个Python列表没有'eval()'。试试:
grad = tf.gradients(ys=tf.reduce_sum(ret), xs=t_in)[0]
或遵循最佳实践并使用
grad = tf.gradients(ys=tf.reduce_sum(ret), xs=t_in)
with tf.Session() as sess:
sess.run(grad, feed_dict=feed_dict)
请不要更改您的整个问题